ELECTROANALYTICAL TECHNIQUES-3

Lecture 3

By

Dr. Shariq Syed

Voltammetry

Electrogravimetry

Analyte electrolytically deposited upon electrode Weighed at electrode

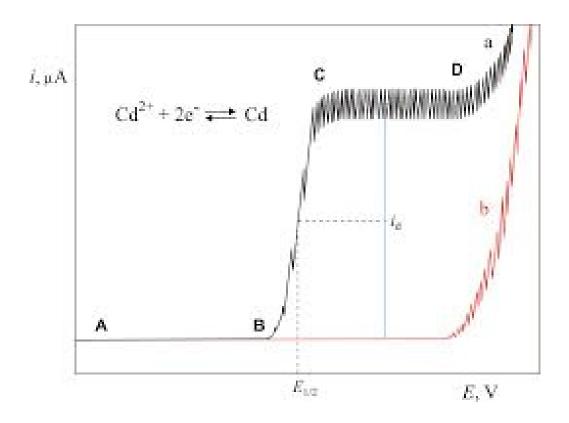
Potentiometry:

Analyte determined by measuring electrode potential of ions compared to reference

Coulometry:

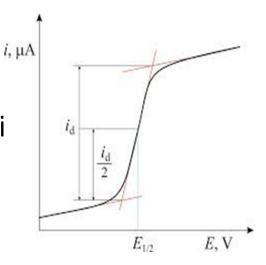
Analyte determined by quantitative reaction during electrolysis

Voltammetry:


Analyte determined by measuring current that is related to conc of analyte by application of potential

Fundamentals of Voltammetry

- Study of Voltage-current relationship during electrolysis
- Determination of substances that can be red/ox at working electrode
- Conditions of variable applied potential, current monitored
- The voltage current graph is called voltagram
- Polarography: Sub class of Volatammetry where working electrode is dropping mercury


Introduction to Polarography

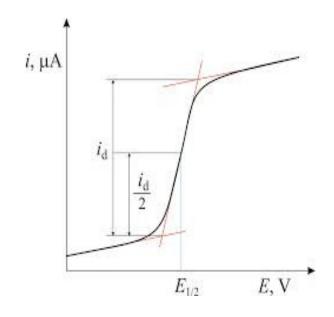
- Working electrode completely polarized so that current prop to conc
 - For this to happen
 - Small surface area of working electrode
 - Prevent surface contamination
- Elegant solution by Czech scientists (Heyrovsky & Shikata)
 - Apparatus that provided continuously replaceable mercury drop as working electrode
 - Voltage-current graphs called polarograms, instrument : polarograph

- Limiting current due to limiting ions reaching electrode
- Three main components to limiting current
- $\mathbf{i}_{limit} = \mathbf{i}_{d} + \mathbf{i}_{c} + \mathbf{i}_{m}$
- Migration current (i_m)
 - lons move to reduce potential
 - Need to suppress, leads to erratic results for low conc analyte
 - Add supporting electrolyte (conduct current, does not get reduced, no contributions to limiting current)
 - Ex 1M HCL (typically in high conc compared to analyte)

- $\mathbf{i}_{limit} = \mathbf{i}_{d} + \mathbf{i}_{c} + \mathbf{i}_{m}$
- Convection current (i_c)
 - Current due to artificial movement of ions
 - Traditional polarography conducted in unstirred soluti
- Diffusion current (i_d)
 - Current due to normal diffusion of ions
 - Rate of diffusion of ion $dc/dt = D. d^2c/dx^2$
 - As convection & migration current negligible, limiting current is mostly due to diffusion current

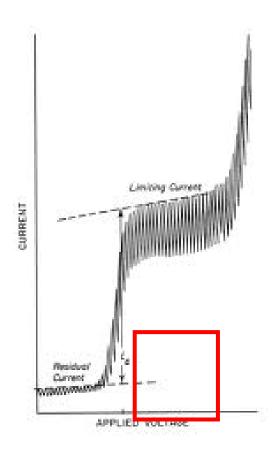
Diffusion current (i_d)

- \underline{i}_d is directly prop to conc of ions in sol
- Ilkovich examined all factors that governed diffusion current

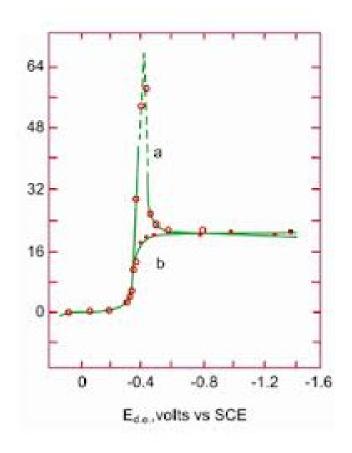

•

• \underline{i}_d = 607nD^{1/2}Cm^{2/3}t^{1/6}

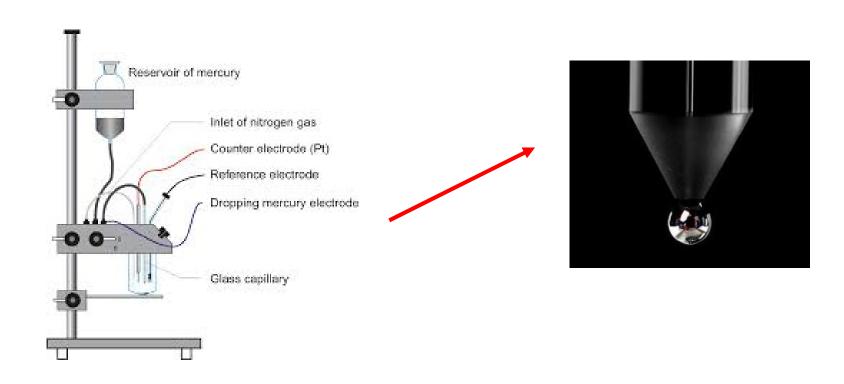
Where


- n = num of faradays of electricity required/mole of analyte
- D = diffusion coefficient
- C = conc of analyte
- m = mass of mercury drop/sec
- t = dropping time (sec)
- For more accurate calculations a correction factor of 1.05-1.15 is applied

- Half-wave potential (E_{1/2})
 - Half-wave potential $(E_{1/2})$ is a potential at which polarographic wave current is equal to one half of diffusion current
 - Potential at polarized electrode obeys Nernst equation and conc of electrolytic species is directly related to diffusion current:
 - E = $E_{1/2}$ + RT/nF ln (I_d -I/I)
 - E = $E_{1/2}$ + 0.0591/n ln (I_d -I/I)
 - When $I = I_d/2$, $E = E_{1/2}$


Residual current (i_d)

- Solutions of ONLY supporting electrolyte also display small current at voltage above -0.4V
- Negative charge surround electrode leading to non-faradaic current
- Increases linearly with applied potential & also on size of mercury drop
- Net current = Faradaic + Non-faradaic
- At low conc, Non-faradaic predominates, limits how low we can go (10⁻⁵M)



Polarographic Maxima

- Occasionally hump/peak seen
- Reasons not clearly known
- To measure true diffusion current, this hump/peak must be suppressed
- Add colloids (gelatin, dyestuff) or detergent (Triton X-100)
- Adsorb at interface, form layer, prevent migration of ions

Construction of Polarographic apparatus

Advantages/Disadvantages of DME

Advantages:

- Fresh, reproducible drop at regular intervals, limits contamination
- Many metals reversibly reduced to amalgams at the surface
- Hydrogen has high overvoltage, allows reduction of many metals without interference
- Surface area can be calculated from weight of drop
- Disadvantages:
- Size of mercury drop changes with & this complicates electrochemistry