TE/civil/sem-II/ AHI | 01/12/2019

QP Code:15099

		(3 Hours)	[Total Marks	(3)
N.B.	: (1) (2) (3)	Q.No.1is compulsory. Attempt any 4 questions out of remaining 6 questions Assume suitable data if necessary and state clearly.		
(a) (b) (c) (d)	Expl Diffe	lain terminal velocity of a body with example. ain boundary layer separation. erentiate between uniform & non uniform flow, steady & universe the condition for maximum discharge for a given value of		4
2. (a)	litres	wer is to be laid a slope of 1 in 8100 to carry a maximum des/sec, when depth of water is 75% of the vertical diameter. Find is pipe. Take Manning's N is 0.025.		10
(b)	Deri	ve the condition for most economical trapezoidal channel inc	luding best side	10
(a) (b)		t is drag? What causes it? Why do we usually try to minimize sify the surface profiles in gradually varied flow with neat sk		10 10
(a) (b)	Find	we the Von-Karman momentum integral equation for boundary the displacement thickness, the momentum thickness and enter velocity distribution in the boundary layer given by $u/U=2\;(y/\delta)\text{-}(y/\delta)^2$	2 2	10
. (a) I	rectar	tine the length of the back water curve caused by an afflux on ngular channel of width 40 meter and depth 2.5 meter. The stren as 1 in 11000. Take Manning's $N=0.03$		10
(b)	The st	e 0.8 m x 0.8 m*weighing 4.0 N assumes an angle of 12° to tring attached to the kite makes an angle of 45° to the horizon tring is 25 N, when the wind is flowing at a speed of 30 k sponding co-efficient of drag and lift. Density of air is given	tal. The pull on m/hr. Find the	10

LM-Con.:8936-14

20

TURN OVER

QP Code:15099

6. (a)	Compare Kennedy's and Lacey's silt theories. Why Lacey's conception superior to that of Kennedy's.	1(
(b)	Design an irrigation canal to carry a discharge of 14 cumecs. Assume N=0.0225, $m=1$ and $B/D=5.7$	1(
7. (a) (b)	Derive the expression for loss of energy due to Hydraulic jump. Write short notes on: (i) Specific Energy and specific energy curve. (ii) Development of lift on an Airfoil.	10

LM-Con.:8936-14.

Course

Prog. 583 to 597 T.E. (CIVIL) (Sem VI)

Q.P Code

15099

Correction

10

10

10 10

0225,

Paper is of 100 marks 3 hrs instead of 60 marks 3 hrs

Query Update time : 01/12/2014 02:35 pm

Bluck No:-2 1) Faisal Siddiqui & CE6026 Jan - F