(OLD COURSE)

21/11/2014

QP Code:14297

(3 Hours) Total Marks: 100

N. B.: (1) Question 1 is compulsory.

- (2) Answer any three from Question 2 to 5
- (3) Figures to the right indicate full marks.
- (4) Draw neat labelled diagrams wherever necessary.
- 1. (a) If $\overline{F} = (y^2 \cos x + z^3) \overline{i} + (2y \sin x 4) \overline{J} + (3xz^2 + 2) \overline{K}$ is a force field, find the work done in moving an object in this field from (0, 1, -1) to $(\frac{\pi}{2}, -1, 2)$.
 - (b) Two urns contain respectively 5 white and 3 black balls; 2 white and 3 black balls. One ball is drawn from each urn. Find the expected number of white balls drawn.
 - (c) The probability distribution of a random variable is given by

 X: -2 -1 0 1 2 3

 P(x=x): 0.1 k 0.2 2k 0.3 k

 find k, the mean and variance.
 - (d) Determine the nature of singalarities of the following function $(z+1) \sin \left(\frac{1}{z+2}\right)$
- 2. (a) Evaluate $\int_{c}^{c} \frac{\sin \pi z^2 + \cos \pi z^2}{z^2 + 3z + 2}$, where C is
 - (i) |Z| = 1 (ii) |Z| = 2
 - (b) gf z = ax+by and r is the correlation coefficient between x and y brove that $\sigma z^2 = a^2 \sigma x^2 + b^2 \sigma y^2 + 2abr\sigma x\sigma y$
 - (c) Verify the stokes theorem for the vector field $\overline{F} = x^2 \overline{i} + xy \overline{J}$ and curve is boundary of the rectangle x = 0, y = 0, x = a, y = b
- 3. (a) The marks obtained by 10 students in an examination were as follows 70,65,68,70,75,73,80,70,83,86. Find the mode, median, mean deviation about the mean.
 - (b) If x denotes the outcome when a fair dice is tosed, find moment generating function of x and hence find the mean and variance of x.
 - (c) Obtain Taylor's and Laurent's series explansion of $f(z) = \frac{z-1}{z^2 2z 3}$ about 8 origin indicating the regions of convergence.
- 4. (a) The marks obtained by students in an university are normally distributed with mean 65 and variance 25. If 3 students are selected at random, what is the probability that at least one of them would have scored more than 75 marks?

TURN OVER

8

QP Code: 14297

6

- (b) Show that in a Possion distribution with unit mean, the mean diviation about mean is times standard deviation.
- (c) Using Residece theorem evaluate $\int_{0}^{2\pi} \frac{d\theta}{1-2a\sin\theta+a^2}$ where 0 < a < 1.
- 5. (a) Evaluate $\iint_s \overline{F} \cdot d\overline{s}$ where $\overline{F} = 4xy\overline{i} 2y^2\overline{J} + z^2\overline{k}$ and S is the region bounded by $y^2 = 4x$, x = 1, z = 0, z = 3.
 - (b) Evaluate $\int \frac{z^2}{z^4 1} dz$ where C is the circle

 (i) $|z| = \frac{1}{2}$ (ii) |z+i| = 1
 - (c) In a sample of 600 men from a certain large city of south Africa, 450 are Ebala infected. In one of 900 from another large city 450 are infected. Do the data indicate a significant difference between the two cities as Ebola infection is concerned?
- 6. (a) Find the work done in moving a paritcle once around the ellipse $\frac{x^2}{\frac{16}{9}} + \frac{y^2}{9} = 1$ in the plane Z =0 in the force field given by $\overline{F} = (3x 2y)\overline{i} + (2x + 3y)\overline{j} + y^2\overline{k}$.
 - $\overline{F} = (3x 2y)\overline{i} + (2x + 3y)\overline{j} + y^{2} \overline{k}$ (b) Evaluate $\int_{c}^{c} \frac{dz}{z^{3}(z+4)}$, Where C is the circle |z| = 2.

 (c) A certain injection administered to 12 patients resulted in the following
 - (c) A certain injection administered to 12 patients resulted in the following charges of bload pressure:
 5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0, 4, can it be conducted that the injection will be in general accompanied by an increse in blood pressure?
- 7. (a) Locate the mode from the following data

 Marks 6 7 8 9 10 11 12 13 14

 No.of Studsents 5 12 18 25 19 9 5 3 2
 - (b) Using Residue theorem evaluate $\int_{c}^{c} \frac{\sin^{6} z}{\left(z \frac{x}{6}\right)^{3}} dz \text{ where C is } |z| = 1.$
 - (c) A transmission channel has a per-diget error probability p = 0.01. Calculate the probability of more than one error in 10 received digits using.
 - (i) Binomial distribution
 - (ii) Poisson Distribution