AM=III-CO-SEM=III 20th Nov 2014

(OLD COURSE)

QP Code:12210

(3 Hours)

Total Marks: 100

N. B.: (1) Question 1 is compulsory.

- (2) Attempt any FOUR of the remaining.
- (3) Figures to the right indicate full marks.
- 1. (a) If a matrix $A = \begin{bmatrix} -4 & -3 & -2 \\ -1 & 0 & 1 \\ 2 & 3 & 4 \end{bmatrix}$ then find adj A 5
 - (b) Find $L\left\{\frac{\sin^2 2t}{t}\right\}$
 - (c) Find Z-transform of $f(K) = 3^k$, $k \ge 0$
 - (d) Find half range Fourier cosine series for f(x) = x, $0 < x < \pi$
- 2. (a) Find L⁻¹ $\left\{ \frac{s^2 + 2s + 3}{(s^2 + 2s + 5)(s^2 + 2s + 2)} \right\}$
 - (b) Find Laplace Transform of f (t) = a, 0 < t < b= 0, t > b
 - (c) Test the consistency of following equations and solve them if consistent $\hat{x} 2y + 3t = 2$, 2x + y + z + t = -4, 4x 3y + z + 7t = 8
- 3. (a) Evaluate $\int_0^\infty e^{-t} \left(\int_0^t e^{-4u} \cos u \, du \right) dt$
 - (b) Find inverse Z-transform of $f(z) = \frac{1}{(z-1)(z-2)} for 1 < |z| < 2$
 - (c) Find Fourier series for $f(x) = \frac{3x^2 6x\pi + 2\pi^2}{12} in(0, 2\pi)$

Hence, deduce that $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$

- 4. (a) Show that the set of functions cosnx, n = 1,2,3,... is orthogonal on $(0,2\pi)$ 6
 - (b) Express the following matrix A as sum of symmetric and skew-symmetric matrix

Where $A = \begin{bmatrix} 2 & -4 & 9 \\ 14 & 7 & 13 \\ 3 & 5 & 11 \end{bmatrix}$

(c) Solve $(D^2-3D+2)y = 4e^{2t}$, with y(0) = -3 and y'(0) = 5

8

LM-Con.:6426-14.

TURN OVER

(a) Solve following using Convolution theorem

6

$$L^{-1} \left\{ \frac{1}{(s^2 + a^2)^2} \right\}$$

(b) Find Fourier Series expansion for $f(x) = 1-x^2$ on (-1,1)

6

(c) Find Fourier Cosine integral representation for $f(x) = e^{-ax}$, x > 0

8

Hence show that
$$\int_0^\infty \frac{\cos ws}{1+w^2} dw = \frac{\pi}{2} e^{-x}$$

6

6. (a) Find L⁻¹ $\left\{ \frac{e^{-\pi s}}{s^2 + 2s + 2} \right\}$

(b) Find rank of $A = \begin{bmatrix} 1 & -1 & 3 & 6 \\ 1 & 3 & -3 & -4 \\ 5 & 3 & 3 & 11 \end{bmatrix}$ converting to normal form.

(c) Obtain Fourier expansion of $f(x) = x^2$ where $-\pi \le x \le \pi$ Hence, deduced that $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$

(a) Show that the matrix $A = \frac{1}{2} \begin{bmatrix} \sqrt{2} & -i\sqrt{2} & 0 \\ i\sqrt{2} & -\sqrt{2} & 0 \\ 0 & 0 & 2 \end{bmatrix}$ is Unitary and hence, find A^{-1}

6

(b) Find $Z\{k^2 a^{k-1}U(k-1)\}$

6

(c) Obtain the complex form of Furier series of $f(x) = e^{ax}$ in (-L,L)

8

LM-Con.:6426-14.