08/12/2014

(OLD COURSE)

QP Code :12312

(3 Hours)

[Total Marks: 100

		사용하는 사용하는 것이 되었다. 그는 사용하는 사용하는 것이 되었다면 보고 있는 것이 되었다. 그는 사용하는 것이 되었다면 보고 있는 것이 되었다면 되었다. 	
	N.B.:	(1) Question No. 1 is compulsory.	
	-	(2) Attempt any four from remaining questions.	
		(3) Figures to the right indicate full marks.	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1.	(a)	Using Quine-Mc-Cluskey Method, determine the minimal SOP form for	10
		$F(A, B, C, D) = \Sigma m (4, 5, 8, 9, 11, 12, 13, 15).$	
	(b)	Design 4—bit Binary to Gray code converter.	10
2.	(a)	Implement following expression using single 4:1 mux.	10
		$F(A, B, C, D) = \Sigma m (2, 6, 8, 12, 13, 14).$	40
	(b)	Explain the operation of 4-bit universal shift register.	10
		CTTI Coult	
3.		Draw 2-input TTL NAND gate and explain list important chara. of TTL family.	10
	(b)	Design MOD-6 synchronous counter and explain its operation.	10
			1
4.		Convert (243.63) ₈ to decimal, binary and hexadecimal	10
	(b)	Obtain Hamming code for 1010. Prove that hamming code is error detecting and	10
		correcting code.	
5.	(a)	Simplify following expression using K-map and realize using only NAND gate.	10
		$F(A, B, C, D) = \Sigma m (1, 2, 3, 8, 9, 10, 11, 14) + d(7, 15).$	
	(b)	Simplify following expression using Boolean laws	10
		(i) $\overline{AB} + \overline{A} + AB$ (ii) $A B + C(\overline{AB} + AC)$	
	(-)	What is Base Bound condition? How it is overcome in M-S L-K FFs	10
6.		What is Race-Round condition? How it is overcome in M-S J-K FFs.	5
	(b)		5
		(ii) State and explain any two application of FFs.	3
_			20
7.	Wri	te short notes on :-	20
		(a) De Morgan's Theorm	
		(b) Priority Encoder	
,		(c) MUX and DEMUX	