21/11/2014 **QP Code: 15282** | | (3 Hours) | | [Total Marks: | [Total Marks: 100 | | | |-----|------------|---|----------------|--|------------------|--| | N.B | (2 |) Question no. 1 is compulsory .) Attempt any four from out of rem) Assume suitable data if necessary | | | | | | 1. | Ans | (a) Explain any five types if enclosing (b) List various assumptions made of transformer. (c) Explain various types of insulossimal (d) Write about choice of flux decreases | de for ca | lculations of leakage reactance in case aterials location in machine. | 5
5
5
5 | | | 2. | (a)
(b) | (b) A 315 KVA, 6600/440 volts, 50hz, 3 phase core type transformer has the following | | | | | | | | design data:- - Maximum flure density - Emf per turn - Stacking factor - Window space factor - Current density - Overall width - Use three stepped core. Calculate the over all diemnsions. | | 1.3 wb/m ² 15 volts 0.9 0.3 3A/mm ² Overall height | | | | 3. | (a)
(b) | b) Extimate the stator core dimensions, number of stator slots and number of stator conductors per slot for a 100kw, 3.3kv, 50Hz, 12 pole star connected slip ring induction motor. Assume:- | | | | | | | | Average gap density Conductors per meter Efficiency Power factor Winding factor Choose main dimension to give b | = - | 0.5.000 4.7 | | | | | | exceed 500 ampere conductors. | | | | | ## **QP Code: 15282** | 4. | (a) | Explain different methods of cooling of transformer with neat sketches. | 10 | |----|-----|--|----| | | (b) | A single phase, 230 volts, 50Hz, transformer is built from stampings having a relative permeability of 1000. The length of the flux path is 2 meter, the area of cross-section of the core is $2 \times 10^{-3} \text{m}^2$ and the primary winding has 575 turns. Extimate the maximum flux and no load current of the transformer. The iron loss at the working flux density is 2.6 w/kg . Iron density $7.8 \times 10^3 \text{ kg/m}^3$, Stacking factor = 0.9 . | 10 | | 5. | (a) | Explain the factors affecting the length of air gap in designing of induction motor. | 10 | | | (b) | What are the different parts of magnetic circuit of three phase induction motor? Estimate the total magnecising mmf of a induction motor and derive an expression for magnetizing current in terms of mmf. | 10 | | 6. | (a) | Explain various types of leakage fluxes in induction motor with neat diagrams. | 16 | | | (b) | Explain Designing aspects of EEM interms of stator, rotor and air gap. | 10 | | 7. | (a) | Compare between (i) Cold rolled steel sheets and Hot rolled steel sheets. (ii) Copper and aluminium. | 10 | | | (b) | What is dispersion coefficient and explain its effect on maximum power factor of induction motor. | 10 | | | | | | LM-Con.:6947-14. 3. 2 4. 5 6. 7.