$EE-\overline{M}(R)$ 19/11/2014 CS-1. Q.P. NO: 15013

(3 Hours)

[Total Marks: 100.

N.B.: (1) Questions No. 1 is compulsory.

- (2) Attempt any Four questions from remaining.
- (3) Use Graph Paper and Semi Log Paper where necessary.
- (4) Assume suitable data wherever necessary.
- 1. (a) Define the transfer fuction. Explain with example how transfer function is related 5 to the characteristics of any system.
 - (b) Define state variables, state, state vectors and state space. 5
 - (c) Name and define four components of a block diagram for a linear, time invarient 5 system.
 - (d) How can you tell from the root locus that the system is stable or unstable. 5
- 2. (a) For a given transfer function find the location of poles and zeros. Plot them on S-plane and write an expresion for the general form of step response without solving for the inverse laplace program.

 State the nature of the response.

$$T(s) = \frac{s+2}{s^2+9}$$

- (b) For the given second order system specification find the location of second order pairs of poles.
 - i) % OS = 12%

Ts = 0.6 second

ii) $T_s = 7 \text{ Sec.}$

Tp = 3 Sec.

3. (a) Find the transfer function G(s) = Vo(s)/Vi(s) for the network.

10

(TURN OVER)

LM-Con: 6099-14.

2

(b) Reduce the block diagram to a single transfer function. T(s) = C(s) / R(s)

4. (a) Use Mason's gain formula and find the transfer function T(s) = C(s) / R(s) for 10 the system.

(b) For the unity feedback systems with the forward transfer function.

$$G(s) = \frac{K(s+20)}{s(s+2)(s+3)}$$

Find the range of K to make the system stable. Use Routh Hurwitz criteria.

5. (a) For the unity feedback system with

$$G(s) = \frac{450(s+8)(s+12)(s+15)}{s(s+38)(s^2+2s+28)}$$

Find the steady state error for the test input 25 u (t), 37 t u (t) and 47 t² u (t)

LM-Con: 6099-14.

(TURN OVER)

Q.P. NO: 15013

10

(b) For the unity feedback system, sketch the root locus

10

$$G(s) = \frac{K(s+2)(s+1)}{(s-2)(s-1)}$$

Find the dominant pole pair for the damping ratio 0.707

Given the unity feedback system with forward transfer function.

10

i me the dominant pole pair for the damping latte 0.707

1

$$G(s) = \frac{K}{s(s+3)(s+12)}$$

Find GM and PM for K = 40 through the bode phase and magnitude plot.

5

(b) Briefly state Nyquist stability criteria.

it's 5

(c) A system with only four real and negative poles and no. zero what would be it's polar plot.

10

7. (a) Consider the following system in its state space for

16

$$\dot{\mathbf{x}} = \begin{bmatrix} -2 & -1 & -3 \\ 0 & -2 & 1 \\ -7 & -8 & -9 \end{bmatrix} \quad \mathbf{x} \quad + \quad \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \quad \mathbf{u}$$

obtain its transfer function.

10

(b) Consider the plant

(a)

 $G(s) = \frac{1}{(s+7)(s+8)(s+9)}$

Obtain state space model in phase variable form. Also draw the singal flow graph of the state space model.

10

) for 10

10

ER)

LM-Con: 6099-14.