15/12/14. SE-EE. Sem III (CBSGS) QP Code: 12543 | (3 Hours) | [Total Marks: 8 | |--|------------------| | N.B: (1) Question No. 1 is compulsory. (2) Attempt any three questions from remaining. (3) Assume switchle data. | | | (3) Assume suitable data wherever necessary. (a) Prove A. (A+B) = A, stating all the rules used. (b) Explain two opamp parameters. (c) Convert following:— (i) (101101)₂ to gray code (ii) (247.6875)₁₀ to octal. | 4 4 4 | | (d) Design full adder using NAND gate. (e) Explain hazards in combinational logic circuits. | 4 | | (a) Explain 555 timer working as monostable multivibrator. (b) Explain an instrumentation amplifier and mention to applications (a) Design mod-12 asynchronous counter using JK flip flop. (b) Minimize the second counter using JK flip flop. | 10
10 | | (b) Minimize the expression using K map and implement using gates. $F = \sum m(0, 5, 9, 12, 13, 14, 15) + d(1, 2, 3, 4)$ | 10
10 | | 4. (a) Explain successive approximation type ADC.(b) Explain noise margin and fan our. | 10
10 | | (a) Implement following expression F(A, B, C) = ∑m(0, 2, 5, 6, 7) us (i) 8:1 Mux (one) (ii) 4:1 Mux (two) (b) Explain high pass filter along with its frequency response. | | | 6. (a) Explain carry look ahead adder. | 10 | | (b) Convert JK to SR flip flop.(c) Write short note on interfacing of logic families. | 10
5
5 | GN-Con: 11495-14.