QP Code: 14849

[Total Marks: 80

(3 Hours)

Note: 1) Question No.1 is compulsory.

- 2) Attempt any three questions out of remaining five question.
- 3) Assume suitable data if required.
- 1. Solve any four each carry equal marks :-

(20)

- a) Explain connection and phasor diagram of Dyl1 and Yy6 transformer.
- b) Explain Crawling of Induction Motor with suitable diagram.
- c) Explain similarity between Transformer and Induction Motor. Why induction machine called generalized transformer?
- d) Discuss double field revolving theory of single phase IM.
- e) Explain need of parallel operation of transformer and write necessary condition for parallel operation.
- 2. a) What is Switching inrush current? Explain Switching in phenomena in 3-phase transformer. (10)
 - A load of 1400 KVA at 0.866 pf lagging is supplied by two 3-phase transformer of 1000 KVA and 500 KVA operating in parallel. The ratio of transformation is same in both 6600/400 delta/star. If the equivalent secondary impedances are $(0.001+j0.003)\Omega$ and $(0.0028+j0.005)\Omega$ per phase respectively. Calculate power factor and load shared by each transformer. (10)
- a) Explain torque-speed characteristic of three phase Induction motor and discuss the effect of (8)
 Resistance on torque speed characteristic.
 - b) A 15 KW, 400V, 4 pole, 50 Hz, 3-phase star connected IM gave following test result: (12)

	Line Voltage	Line current	Power Input
No-load Test	400V	9A	1310W
Block rotor Test	200V	50A	7100W

Stator and rotor ohmic losses at standstill are assumed equal. Draw circle diagram for Induction Motor and Calculate:

- a) Line current power factor, slip, torque, efficiency at full load
- b) Max. Power output and max. torque.
- 4. a) Explain need of starter for three phase IM and explain star delta starter in detail with Suitable diagram. (10)
- Discuss V/F control method of speed control with speed-torque characteristic. (5)
 - A 3-phase, 6 pole, 50Hz induction motor has a full load speed of 960 rpm with its slip ring short circuited. The motor drive a constant torque load. Its rotor speed reduced to:
 - (a) 800 rpm &
 - (b) 400 rpm by inserting external resistance in rotor, compare the rotor ohmic losses at these to reduce speed with that at full load.
- a) Draw equivalent circuit diagram of single phase Induction motor for no load & block rotor (10) test and find its parameters.
 - b) Describe the principle of operation of Capacitor start and capacitor run induction motor (10)

[TURN OVER

GN-Con.:7731-14.