|               | Explain its significance.                                                      |                            |               |    |
|---------------|--------------------------------------------------------------------------------|----------------------------|---------------|----|
| (C)           | In a normal shock wave occurring in a helium (k=1.66) the density              |                            |               | 10 |
|               | downstream of the shock is three times that on the upstream.                   |                            |               |    |
|               | Calculate the corresponding pressure ratio and velocity ratio. What            |                            |               |    |
| 136VB)        | are the Mach numbers upstream and downstream of the shock?                     |                            |               |    |
| Q.6 (A)       |                                                                                | as following are connected | d in parallel | 10 |
|               | between two points                                                             |                            |               |    |
|               | Pipe Lengt                                                                     | th Diameter                | <i>J</i>      |    |
|               | 1 1000 1                                                                       | m 20 cm                    | 0.02          |    |
|               | 2 1200 1                                                                       |                            | 0.015         |    |
| and the color | 2 800 n                                                                        | 15 cm                      | 0.02          |    |
|               | When the total discharge of 0.30 m <sup>3</sup> /sec flows through the system, |                            |               |    |
|               |                                                                                |                            |               | -  |
|               | calculate distribution of discharge and head loss between the                  |                            |               |    |
|               | impations                                                                      |                            |               |    |
|               | junctions.                                                                     |                            |               | 05 |
| (B)           | Explain Prandtl mixing length theory for turbulent fluid flow.                 |                            |               | 05 |
| (C)           | Write short note on induced drag on an aerofoil.                               |                            |               | 05 |
|               |                                                                                |                            |               |    |