SE-Mech. Sem-IV old. A.M. IV. (OLD COURSE)

21/11/2014 QP Code :14300

(3 Hours)

Total Marks: 100

6

6

N. B.: (1) Question No.1 is compulsory.

- (2) Attempt any four questions form the remaining six questions.
- (3) Figures to the right indicate full marks.
- (4) Use of statistical table is allowed.

1. (a) Derive wave equation for vibration of string.

(b) If 6y = 5x + 90 and 15x = 8y + 130 are the two lines of regression then find x = x, y = x.

(c) Find the furrier sevice for f(x) = x in (-1, 1)

(d) If x is Binomially distributed with E (x) = 2 and v (x) = $\frac{4}{3}$ then find the probability distribution of x.

2. (a) A discrete random variable has the probality density function given below

X	-2	-1	0	1	2	3-%
p(x = x)	0.2	k	0.1	2k	0.1	2k

Find K and mean

(b) Fit a Binomial distribution to the following data

		200220					
x	0	1	2	3	4	5	6
f	5.	18	28	12	7	6	4

Also calculate the expected frequencies.

(c) Find the Fourier series expansion of

$$f(x)=x^2, -\pi \le x \le \pi$$

3. (a) Calculate the coefficient of correlation between x and y from the following

ши			. 0	7		
	X	3	5.5	4	6	2
	У	3_<	4	5	2	6

(b) Find the Fourier series expansion for

$$f(n)$$
 = $\pi + x$, $-\pi < x < 0$
= $\pi - x$, $0 < x < \pi$

(c) Find the equation of line of requression for y on x from the following data.

K	X	36	32	34	31	31	32	35
	у	35	33	31	30	34	32	36

(a) Find half range cosine series for f(x) = x in (0, 2)

(b) Using poission distribution find the probability that atmost 4 defective bulbs will be found in a box of 200 bulbs if it is known that 2 percent of the bulbs are defective.

LM-Con.:6817-14.

8

6

6

6

8

(c) Calculate the rank correlation coefficient from the following data.

X	12	17	22	27	32
У	113	119	117	115	121

5. (a) If X is a normal variate with mean 10 and standard deviation 4 then find

(i)	nie .	400
(1)	$P(5 \le x \le$	1 2
1 1 /		1 63

(ii)
$$P(x \le 12)$$

(b) Obtain the Fourier series for f (x), where

$$f(n)$$

$$\begin{cases}
=-c, -a < x < 0 \\
= c, 0 < x < 0
\end{cases}$$

(c) Fit a Poission distribution to the following data

X	0	1	2	3	4
У	123	59	14	3	1

Also calculate the expected frequencies.

- 6. (a) Expand $f(x) = lx x^2$, 0 < x < l in a half range sine series.
 - (b) A manufacturer knows from his experience that the resistance of resistors, he produces is normal with $\mu=100$ ohms and standard deviation $\sigma=2$ ohms. What percentage of resistors will have resistance between 98 ohms and 102 ohms?
 - (c) Determine the solution of one-dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ under the boundary conditions u(0,t) = 0, u(l,t) = 0 and u(x,0) = x(0 < x < l), l being the length of the rod.
- 7. (a) A machine is set to produce metal plates of thickness 1.5 cms with standard deviation 0.2 cms. A sample of 100 plates produced by the machine gave an average thickness of 1.52 cms. Is the machine fulfilling the purpose?
 - (b) Theory predicts that the proportion of beans in the four groups A, B, C, D should be 9:3:3:1 In an experiment among 1600 beans, the numbers in the four group were 882, 313, 287 and 118. Does the experimental results support the thory?
 - (c) A string is stretched and fastened to two points distance *l* apart. Motion is

started by displacing the string in the form $y = a \sin\left(\frac{\pi x}{l}\right)$ from which it is released at time t = 0. Show that the displacement of a point at a distance x from one end at time t is given by $y_{(x,t)} = a \sin\left(\frac{\pi x}{l}\right) \cos\left(\frac{\pi ct}{l}\right)$.