AM·II - (CBSGS)

OP Code: 11859

- (c) Apply Runge-kutla method of fourth order to find an approximate value of y 8 at x = 1.2 if $\frac{dy}{dx} = x^2 + y^2$, given that y = 1.5 when x = 1 choosing h = 0.1
- (a) Solve $[xy^2 e^{1/x^3}] dx yx^2 dy = 0$ 6
 - (b) If y satisfies the equation $\frac{dy}{dx} = x^2y 1$ and with y = 1 when x = 0, using 6 Taylor's series method for y about x = 0, find y when x = 0.1 and x = 0.2
 - (c) Compute the value of the definite integral $\int_{1}^{1} \frac{dx}{1+x^2}$ by using 8
 - Trapezoidal rule
 - Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule
 - Simpson's $\left(\frac{3}{8}\right)^{th}$ rule. Compare result with exact values.
- (a) A radial displacement 'u' in rotating a disc at a distance 'r' from the axis in 6 given by $\frac{d^2u}{dr^2} + \frac{1}{r}\frac{du}{dr} - \frac{u}{r^2} + kr = 0$. Find the displacement given u = 0 when r = 0 and r = a
 - (b) Evaluate $\iint x^2 dxdy$ over the region bounded by $xy = a^2$, x = 2a, y = 0 and y = xin the first quadrant.
 - (c) Find the volume of the tetrahedron bounded by the co-ordinate planes and 8 the plane $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$

GN-Con. 5641-14.