17:12.2014.

QP Code : 11908

(OLD COURSE) (3 Hours)

[Total Marks: 100

3

3

2

3

2

3

2

- N. B.: (1) Question No 1 is compulsory.
 - (2) Attempt any four out of remaining.
- (a) The resistance of a 50Ω resistor is increased by 10% when its operating 1. temperature increased from 20°C to 50°C! Calculate resistance temperature coefficient at 0°C.
 - (b) Find current through $\underline{4\Omega}$ resistance by superposition theorem.

18 V

- (c) An instantaneous current i= $10\sin(314t + 20^\circ)$ A flows through a circuit containing pure resistor of 5Ω . Write an instantaneous wave equation of voltage across resistor.
- (d) In inductive coil containing resistance 10Ω and inductance of 0.lH is connected in parallel with a capacitor of 150 µF. Find resonant frequency of the circuit & dynamic impedance of the circuit.
- (e) The readings of the two wattmeters connected to measure three phase power input are 1000W and 500W. Find total reactive power in the circuit.
- (f) Draw the circuit diagram to carry out short circuit test on single phase transformer.
- (g) Explain working principle of a three phase induction motor.
- (h) Define rectification efficiency of a full wave rectifier.
- (a) Find current in 10Ω by mesh analysis.

LM-Con. 10251-14.

FE Sem I (old) B.E.E.

QP Code: 11908

8

- (b) A coil having resistance of 10Ω and an inductor of 50mH is connected to a 230V, 50Hz supply. Find impedance of a coil, current, power factor of a coil and power factor of complete circuit.
- (c) Draw the phasor diagram of a transformer on lagging pf load & write meaning of all the terms used.
- 3. (a) Derive the relation between line and phase quantities in three phase star connected load.
 - (b) Explain open circuit test to calculate R₀ & X₀ of a single phase transformer.
 - (c) Explain double field revolving theory in single phase induction motors.
- 4. (a) Find maximum power in R_L.

(b) Find rms value of waveform shown.

- (c) A three phase star connected load has a pf 0.4 lag. Two wattmeters are connected to measure power input. Total power in the circuit is 30KW. Find readings of each wattmeter
- (d) Explain full wave bridge rectifier with neat waveforms.
- 5. (a) Derive the formula for delta to star conversion of resistances.
 - (b) A coil of 0.6 pf is in series with a 100 μF capacitor and is connected to a 50Hz supply. The potential difference across the coil equal to the potential difference across capacitor. Find resistance and inductance coil.
 - (c) The OC & SC on a 5 KV A, 200V /400V, 50Hz, single phase transformer gave following test results
 - OC Test (meters on LV) 200V, 1A, 100W SC Test (meters on HV) 15V, 10A, 85W.

[TURN OVER

5

7

5

8

LM-Con. 10251-14.

FE Sem I (old) B.E.E.

QP Code: 11908

6

3

Calculate equivalent circuit parameters referred to primary, Calculate efficiency of transformer at full load, 0.8 pf Lag.

6. (a) Find the current in 2Ω by superposition theorem.

(b) A resistor and a capacitor are in series with a variable inductor. When the circuit is connected to a 220V, 50Hz supply, the maximum current obtainable by varying the inductance is 0.314A. The voltage across capacitor is then 800V, find R, L and C.

(c) Prove that the two wattmeter method can measure power input taken by a three phase star connected circuit.

(a) An alternating current of 50Hz frequency has a maximum value of 100A. Calculate 2 its value 1/600 sec after the instant of current zero and increasing positively thereafter.

(b) Find the current in inductor for the circuit shown.

(c) A 15KVA single phase transformer was loaded as follows 2KW at 0.5 pf for 12 hours 12KW at 0.8 pf for 6 hours 18KW at 0.9 pf for 6 Hours. If iron loss and full load copper loss both are equal to 153W, Find all day efficiency.

(d) Derive an expression for emf induced in DC motor.

5 (e) Describe experimental setup to obtain the input output characteristics of CE 5 configuration of BJT.