12.12.14

v = T

QP Code :14675

		(3 Hours) [Total Mai	Ks: 80
N.B	(Question No. 1 is compulsory. Solve any three questions out of remaining three questions. All questions carry equal marks as indicated by figures to the right. Assume appropriate data whenever required. State all assumptions clearly. 	
1.	(a) (b)	Prove by mathematical induction x ⁿ -y ⁿ is divisible by x-y. How many vertices are necessary to construct a graph with exactly 6 edges in whice each vertex is of degree 2.	5 ch 5
	(c)		ce 5
	(d)	Prove that the set $G = \{1, 2, 3, 4, 5, 6\}$ is an abelian group under multiplication modulo 7.	on 5
2.	(a) (b)	Is it possible to draw a tree with five vertices having degrees 1, 1, 2, 2, 4? Find how many integers between 1 and 60 are (i) not divisible by 2 nor by 3 and nor by 5.	4 8
e*1	(c)	(ii) Divisible by 2 but not by 3 and nor by 5.	8
3.	(a) (b)	Show that $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$ State and explain Pigeonhole principle, extended Pigeonhole principle. How man numbers must be selected from the set $\{1, 2, 3, 4, 5, 6\}$ to guarantee that at leasone pair of these numbers add up to 7?	
	(c)		8
4.	(a)	Find the generating function for the following sequence (i) 1, 2, 3, 4, 5, 6 (ii) 3, 3, 3, 3, 3	4
	(b)	Show that the (2, 5) encoding function e:B ² \rightarrow B ⁵ defined by $e(00) = 00000 e(01) = 01110$ $e(10) = 10101 e(11) = 11011$ is a group code.	8
	(c)	How many errors will it detect and correct.	8

5. Define Distributive Lattice along with one appropriate example.

(b) Let the functions f, g, and h defined as follows:

- $f: R \to R, f(x) = 2x + 3$
 - $g: R \to R, g(x) = 3x+4$
 - h: $R \rightarrow R$, h(x) = 4x

Find gof, fog, foh, hof, gofoh

 $let H = \left| \begin{array}{cccc} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right|$ (c)

8.

Be a parity check matrix. Determine the group code e_{rr} : $B^3 \rightarrow B^6$

(a) Determine if $[(p \Rightarrow q) \land \neg q] \Rightarrow \neg p$ is a tautology. 6.

(b) Define isomorphic graphs. Show that following graphs are isomorphic.

(c) R be a relation on set of integers Z defined by

 $R=\{(x, y) \mid x-y \text{ is divisible by 3}\}$ Show that R is an equivalence relation and describe the equivalence classes.