(REVISED COURSE)

QP Code: 11958

(2 Hours)

[Total Marks: 60

15

2+

3+

3+

- N. B.: (1) Question No. 1 is compulsory.
 - (2) Attmept any three questions from Question No. 2 to 6.
 - (3) Use suitable data wherever required.
 - (4) Figures to the right indicate the full marks.
- 1. Attempt any five of the following:
 - (a) Identify the type of lattice and number of atoms per unit cell for CsCl and BaTiO₃ (above 120°C) crystal structure.
 - (b) Fermi Energy for Silver is 5.5 eV. Find out the energy for which the probability of occupancy at 300 K is 0.9.
 - (c) Explain the formation of depletion region in an unbiased p-n junction.
 - (d) Write three distinct differences between ionic and orientational polarization.
 - (e) Draw the variation of permeability against external magnetic field for a paramagnetic and ferromagnetic material (below Curie temperature).
 - (f) Mention only one solution for each of the following acoustical problems in a hall (i) echo (ii) dead spot and (iii) inadequate loudness.
 - (g) What is piezoelectric effect? Why ferro-electrics are preferred than quartz for the production of ultrasonic waves?
- 2. (a) What is effective mass? Why the effective mass of holes is more than the effective mass of electrons?
 - Draw the diagrams only (fully labelled and self explanatory) to show the variation of Fermi energy with (i) temperature and (ii) impurity concentration at high level, for an n-type semiconductor.
 - (b) Define space lattice and basis. A metal crystallizes with a density of 2.7 gm/cc 1+1+ and has a packing fraction of 0.74. Determine the mass of one atom if the nearest neighbour distance is 2.86Å.
- 3. (a) Explain the variation in magnetic induction with magnetic field for a ferromagnetic material, using the domain theory and with the help of a graph. A magnetic field of 1800 Amp/m produces a magentic flux of 3 x 10⁻⁴ Wb in an iron bar of cross-sectional area 0.2 cm². Calculate the susceptibility and the permeability.
 - (b) How the variation in glancing angle is achieved while determining the crystal structure using (i) rotating crystal method and (ii) powder method? Calculate Bragg angle if (200) planes of a BCC crystal with lattice parameter 2.814Å give second order reflection with X-rays of wavelength 0.71Å.

TURN OVE