EF Rom T (ronn) ocholon4

F.E./ sem-I/ CBSGS/AM-I

05/12/2014

(REVISED COURSE)

QP Code:11932

(3 Hours)

Total Marks: 80

N. B.: (1) Q. No.1 is compulsory.

- (2) Attempt any three questions from question no.2 to question no.6.
- (3) Figures to the right indicate full marks.

1. (a) If
$$\tanh x = \frac{2}{3}$$
, find the value of x and then $\cosh 2x$

(b) If
$$u = \tan^{-1}\left(\frac{y}{x}\right)$$
, Find these value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$

(c) if
$$x = r \cos \theta$$
, $y = r \sin \theta$
Find $\frac{\partial (x,y)}{\partial (r,\theta)}$

(d) Prove that
$$\log \sec x = \frac{1}{2}x^2 + \frac{1}{1z}x^4 + \frac{1}{45}x^6$$

- (e) Show that every square matrix can be uniquely expressed as the sum of Hermitian matrix and a skew Hermitian matrix.
- (f) Find the nth derivative of $y = \sin x \sin 2x \sin 3x$

2. (a) Solve the equation
$$x^{6}+1=0$$

(b) Reduce the matrix to normal form and find its rank, where

$$A = \begin{bmatrix} 1 & -1 & 3 & 6 \\ 1 & 3 & -3 & -4 \\ 5 & 3 & 3 & 11 \end{bmatrix}$$

(c) State and prove Eulers theorem for a homogeneous function in two variables: 8
Hence verify the Eulers theorem for

$$u = \frac{\sqrt{xy}}{\sqrt{x} + \sqrt{y}}$$

3. (a) Test the consistency of the following equations and solve them if they are consistent.

$$2x - y + z = 8$$
, $3x - y + z = 6$
 $4x - y + 2z = 7$, $-x + y - z = 4$

(b) Find the stationary values
$$x^3 + 3xy^2 - 3x^2 - 3y^2 + 4$$

(c) Separate into real and imaginary parts of sin⁻¹ (e^{iθ})

[TURN OVER

GN-Con.:10076-14.

Correction

4. (a) If x = uv, $y = \frac{u}{v}$ prove that J.J = 1

6

6

8

6

- (b) Show that for real values of a and b, $e^{2 \text{ ai cot}^{-1} \text{ b}} \left[\frac{\text{bi} 1}{\text{bi} + 1} \right]^{-a} = 1$
- (c) Solve the following equations by Gauss-seidel method 27x + 6y z = 85 6x + 15y + 2z = 72x + y + 54z = 110
- 5. (a) Expond $\cos^7\theta$ in a series of cosines of multiple of θ
 - (b) If $\lim_{X \to 0} \frac{\text{asinhx+bsinx}}{x^3} = \frac{5}{3}$, find a and b
 - (c) If $y = \frac{\sin^{-1} x}{\sqrt{1-x^2}}$ then prove that $(1 x^2) y_{n+1} (2n+1) xy_n n^2 y_{n-1} = 0$ 8
- 6. (a) Examine whether the vectors $x_1 = [3, 1, 1] \qquad x_2 = [2, 0, -1]$ $x_3 = [4, 2, 1] \text{ are linearly independent.}$
 - (b) If u = f(x-y, y-z, z-x) then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$
 - (c) Fit a straight line for the following data

X	1	2	3	4	5	6
у	49	54	60	73	80	86

GN-Con.:10076-14.