2009 40 Con. 2581-10.

Phaem. Anal. -V

MX-8488

[Total Marks : 35

- N.B. (1) Question No. 1 is compulsory.
 - (2) Attempt any four questions from remaining six questions.
 - (3) Figures to the right indicate full marks.
 - (4) Draw neat diagrams wherever necessary.
 - 1. (a) Explain the following terms any two:-
 - (i) Combination bands
 - (ii) Coupling constant
 - (iii) Metastable ion
 - (iv) Secondary packaging material.
 - (b) Name the following any three :-
- 3 (i) Peak in mass spectrometry generally with highest m/e value
 - (ii) Internal standard used in NMR spectroscopy.
 - (iii) Effect due to which acetylenic protons are shielded
 - (iv) Two Q.C. tests for collapsible tubes.
- 2. (a) Explain anisotropic effects with suitable examples.
 - (b) Calculate λmax for uv spectrum of

- 4
- 3

- 3. (a) List out various ionisation techniques in Mass spectrometry. Explain one ionisation technique in detail.
 - (b) Explain how you will distinguish between the following compounds using any one spectral technique.

Con. 2581-MX-8488-10.

2

4. (a) Write a note on the principle involved in X Ray Diffraction. Discuss its pharmaceutical applications.

3

7

(b) A compound has molecular weight 59.

Its IR Shows bands at 3300, 3155, 2950, 1660 cm⁻¹

 ^{1}H NMR $$\delta$$ 1.1 t 3 H $$\delta$$ 2.20 q 2 H $$\delta$$ 6.15 broad singlet 2H (exchangeable)

Deduce the structure and justify your answer.

- (a) Justify the significance of raw material analysis of pharamaceuticals. Write 4
 down the steps involved in analysis of actives.
 - (b) Depict two fragmentation pathways in the mass spectrum, giving m/z values, for the following compound.

- 6. (a) What are hyphenated techniques? Describe the interfaces of any one of them in detail.
 - (b) A compound has molecular weight 44 and shows the following spectral characteristics.

IR 2970, 2520, 1710 cm⁻¹

 $^{1}\text{H NMR}$ δ 2.14 d 3H δ 9.78 g 1H

- 7. Write short notes on any two of the following :-
 - (a) Theory and applications of Near IR spectroscopy
 - (b) Quality control tests for plastic containers
 - (c) Mc Laffarty rearrangement
 - (d) Instrumentation of ¹H NMR spectroscopy.