Digital Signal
Processing

Applications

Sanjit K Mitra






Contents

1 Applicationsof Digital Signal Processing 1
1 Dual-Tone Multifrequency Signal Detection. . . . . . ... ... ... .. ...... 1
2 Spectral Analysis of Sinusoidal Signals . . . . . . . .. .. ... ... L. 5
3 Analysis of Speech Signals Usingthe STET. . . . . . . .. ... ... ... ..... 11
4  Spectral Analysisof Random Signals . . . . . . . . . ... Lo 13
5 Musical Sound Processing . . . . . . . . o i e e 21
6 Digital Music Synthesis . . . . . . . . . . . . . e 35
7 Discrete-Time Analytic Signal Generatian. . . . . . .. ... ... ... ....... 37
8 Signal Compression. . . . . . . . e 44
9  Transmultiplexers . . . . . . . 51
10 Discrete Multitone Transmission of DigitalData . . . . . . ... ... ........ 55
11 Oversampling A/ID Converter. . . . . . . . o v i e e 58
12 OversamplingD/AConverter. . . . . . . . . . e 64
13 Sparse Antenna Array Design . . . . . .. L L 69
14 ProgramsS. . . . . . o i i e e e 73



CONTENTS



Applications of Digital Signal
Processing

As mentioned in Chapter 1 of Text, digital signal processeahniques are increasingly replacing con-
ventional analog signal processing methods in many fieldd) as speech analysis and processing, radar
and sonar signal processing, biomedical signal analysispaocessing, telecommunications, and geo-
physical signal processing. In this chapter, we includenadienple applications to provide a glimpse of
the potential of DSP.

We first describe several applications of the discrete Eouransform (DFT) introduced in Sec-
tion 5.2. The first application considered is the detectitthe frequencies of a pair of sinusoidal signals,
called tones, employed in telephone signaling. Next, weudis the use of the DFT in the determination
of the spectral contents of a continuous-time signal. Tiecebf the DFT length and the windowing
of the sequence are examined in detail here. In the followawjion, we discuss its application of the
short-time Fourier transform (STFT) introduced in Sectiohl of Text for the spectral analysis of non-
stationary signals. We then consider the spectral analysesrdom signals using both nonparametric and
parametric methods. Application of digital filtering mettsoto musical sound processing is considered
next, and a variety of practical digital filter structure®fus for the generation of certain audio effects,
such as artificial reverberation, flanging, phasing, fittgriand equalization, are introduced. Generation
of discrete-time analytic signals by means of a discrete-tHilbert transformer is then considered, and
several methods of designing these circuits are outlinedgalith an application. The basic concepts
of signal compression are reviewed next, along with a teghnfor image compression based on Haar
wavelets. The theory and design of transmultiplexers aeudised in the following section. One method
of digital data transmission employing digital signal presing methods is then introduced. The basic
concepts behind the design of the oversampling A/D and Diveders are reviewed in the following
two sections. Finally, we review the sparse antenna arrsigdédor ultrasound scanners.

1 Dual-Tone Multifrequency Signal Detection

Dual-tone multifrequency (DTMF) signaling, increasinglging employed worldwide with push-button
telephone sets, offers a high dialing speed over the dislemignaling used in conventional rotary tele-
phone sets. In recent years, DTMF signaling has also fouptcagions requiring interactive control,
such as in voice mail, electronic mail (e-mail), telephoaaking, and ATM machines.

A DTMF signal consists of a sum of two tones, with frequent¢#®n from two mutually exclusive
groups of preassigned frequencies. Each pair of such t@pgesents a unique number or a symbol.
Decoding of a DTMF signal thus involves identifying the tvames in that signal and determining their
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2 1: Applications of Digital Signal Processing

corresponding number or symbol. The frequencies allodatétke various digits and symbols of a push-
button keypad are internationally accepted standardsrarghawn in Figure 1.35 of TextThe four keys

in the last column of the keypad, as shown in this figure, ateyabavailable on standard handsets and
are reserved for future use. Since the signaling frequsreall located in the frequency band used for
speech transmission, this is amband systemInterfacing with the analog input and output devices is
provided bycodec(coder/decoder) chips or A/D and D/A converters.

Although a number of chips with analog circuitry are avdiator the generation and decoding of
DTMF signals in a single channel, these functions can alsmpemented digitally on DSP chips. Such
a digital implementation surpasses analog equivalentgifopnance, since it provides better precision,
stability, versatility, and reprogrammability to meet etlione standards and the scope for multichannel
operation by time-sharing, leading to a lower chip count.

The digital implementation of a DTMF signal involves additvgp finite-length digital sinusoidal
sequences, with the latter simply generated by using Igotadbles or by computing a polynomial expan-
sion. The digital tone detection can be easily performeddmputing the DFT of the DTMF signal and
then measuring the energy present at the eight DTMF fregegndhe minimum duration of a DTMF
signal is 40 ms. Thus, with a sampling rate of 8 kHz, there am@st0.04 x 8000 = 320 samples
available for decoding each DTMF digit. The actual numbesarhples used for the DFT computation
is less than this number and is chosen so as to minimize tfezeatite between the actual location of the
sinusoid and the nearest integer value DFT inklex

The DTMF decoder computes the DFT samples closest in freyuerihe eight DTMF fundamental
tones and their respective second harmonics. In additipnaetical DTMF decoder also computes the
DFT samples closest in frequency to the second harmoniossgmnding to each of the fundamental tone
frequencies. This latter computation is employed to digtish between human voices and the pure sinu-
soids generated by the DTMF signal. In general, the speabfiarthuman voice contains components at
all frequencies including the second harmonic frequen@eshe other hand, the DTMF signal generated
by the handset has negligible second harmonics. The DFT gtatign scheme employed is a slightly
modified version of Goertzel’s algorithm, as described int®a 11.3.1 of Text, for the computation of
the squared magnitudes of the DFT samples that are needéfenergy computation.

The DFT lengthV determines the frequency spacing between the locatiorieedDET samples and
the time it takes to compute the DFT sample. A lafgenakes the spacing smaller, providing higher
resolution in the frequency domain, but increases the coatipn time. The frequency; in Hz corre-
sponding to the DFT index (bin numbér)s given by

Je=—, k=0,1,...,N —1, (1)

whereFr7 is the sampling frequency. If the input signal contains asiid of frequencyf, different from

that given above, its DFT will contain not only large-valusimples at values d@f closest toN fin/ Fr

but also nonzero values at other valueg afue to a phenomenon called leakage (see Example 11.16 of
Text). To minimize the leakage, it is desirable to cho®sappropriately so that the tone frequencies fall
as close as possible to a DFT bin, thus providing a very stidfig sample at this index value relative to

all other values. For an 8-kHz sampling frequency, the balstevof the DFT lengttV to detect the eight
fundamental DTMF tones has been found to be 205 and that fectileg the eight second harmonics

is 2012 Table 1 shows the DFT index values closest to each of the tone freigsand their second

Linternational Telecommunication UnioBCITT Red Bookvolume VI, Fascicle VI.1, October 1984.
2Digital Signal Processing Applications Using the ADSP-@Eamily, A. Mar, editor, Prentice Hall, Englewood Cliffs NJ, 1992.
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Figure 1. Selected DFT samples for each one of the DTMF tone signal§ fer 205.

harmonics for these two values of, respectively. Figurd shows 16 selected DFT samples computed
using a 205-point DFT of a length-205 sinusoidal sequencedoh of the fundamental tone frequencies.

Program A-% can be used to demonstrate the DFT-based DTMF detectionithipo The outputs
generated by this program for the input symbol # are display&igure2.

SAll M ATLAB programs mentioned in this section are given in the Prog@eation of the CD.



4 1: Applications of Digital Signal Processing

Table 1: DFT index values for DTMF tones fa¥ = 205 and their second harmonics far = 201.

Basic Near est
tone Exact k integer  Absolute
inHz value  kvalue errorink
697 17.861 18 0.139
770 19.731 20 0.269
852 21.833 22 0.167
941 24.113 24 0.113
1209 30.981 31 0.019
1336 34.235 34 0.235
1477 37.848 38 0.152
1633 41.846 42 0.154

Second Near est
harmonic Exact k integer  Absolute
inHz value kvalue errorink
1394 35.024 35 0.024
1540 38.692 39 0.308
1704 42.813 43 0.187
1882 47.285 a7 0.285
2418 60.752 61 0.248
2672 67.134 67 0.134
2954 74.219 74 0.219
3266 82.058 82 0.058

Adapted fromDigital Signal Processing Applications Using the ADSP-@Eamily, A. Mar, editor, Pren-
tice Hall, Englewood Cliffs NJ, 1992.
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Figure2: A typical output of Program A-1.



2. Spectral Analysis of Sinusoidal Signals 5

2 Spectral Analysis of Sinusoidal Signals

An important application of digital signal processing nath is in determining in the discrete-time do-
main the frequency contents of a continuous-time signakensommonly known aspectral analysis
More specifically, it involves the determination of eitheetenergy spectrum or the power spectrum of
the signal. Applications of digital spectral analysis carfdund in many fields and are widespread. The
spectral analysis methods are based on the following oatenv If the continuous-time signal, (¢)

is reasonably band-limited, the spectral characteristidss discrete-time equivalerg[n] should pro-
vide a good estimate of the spectral propertieggf). However, in most caseg,(¢) is defined for
—o00 < t < oo, and as a resulig[n] is of infinite extent and defined foroo < n < oo. Since it is
difficult to evaluate the spectral parameters of an infifetegth signal, a more practical approach is as
follows. First, the continuous-time signgj () is passed through an analog anti-aliasing filter before it is
sampled to eliminate the effect of aliasing. The output efflter is then sampled to generate a discrete-
time sequence equivalegfn]. It is assumed that the anti-aliasing filter has been dedigperopriately,
and hence, the effect of aliasing can be ignored. Moreower further assumed that the A/D converter
wordlength is large enough so that the A/D conversion naigebe neglected.

This and the following two sections provide a review of someciral analysis methods. In this sec-
tion, we consider the Fourier analysis of a stationary sigomposed of sinusoidal components. In Sec-
tion 3, we discuss the Fourier analysis of nonstationary signdfstime-varying parameters. Sectidn
considers the spectral analysis of random sighals.

For the spectral analysis of sinusoidal signals, we assbhatetlie parameters characterizing the si-
nusoidal components, such as amplitudes, frequencieqlase, do not change with time. For such a
signalg[n], the Fourier analysis can be carried out by computing itgiEotransformG (e/¢):

o

Ge/) =} glnle™"". e

n=—0oo

In practice, the infinite-length sequengé:] is first windowed by multiplying it with a lengtiv
window w(r] to make it into a finite-length sequeng:] = g[n] - win] of length N. The spectral
characteristics of the windowed finite-length sequepjeé obtained from its Fourier transforifi(e/)
then is assumed to provide a reasonable estimate of theeFdtansformG (e/?) of the discrete-time
signalg[n]. The Fourier transforni’(e/®) of the windowed finite-length segmenf] is next evaluated
ataset ofR(R > N) discrete angular frequencies equally spaced in the rdrge < 27 by computing
its R-point discrete Fourier transform (DFT)[k]. To provide sufficient resolution, the DFT lengkhis
chosen to be greater than the winddiby zero-padding the windowed sequence WRth N zero-valued
samples. The DFT is usually computed using an FFT algorithm.

We examine the above approach in more detail to understatichitations so that we can properly
make use of the results obtained. In particular, we analgeethe effects of windowing and the evaluation
of the frequency samples of the Fourier transform via the DFT

Before we can interpret the spectral contentg’/®), that is, G(e/), from I'[k], we need to re-
examine the relations between these transforms and thegspmnding frequencies. Now, the relation
between thek-point DFT I'[k] of y[r] and its Fourier transfornfi (/) is given by

Ikl = I'(e’®)| 0<k<R-1. (3)

w=2nk/R’

4For a detailed exposition of spectral analysis and a coreigiew of the history of this area, see R. Kumaresan, "Sakctr
analysis", In S.K. Mitra and J.F. Kaiser, editot$andbook for Digital Signal Processinghapter 16, pages 1143-1242. Wiley-
Interscience, New York NY, 1993.



6 1: Applications of Digital Signal Processing

The normalized discrete-time angular frequengycorresponding to the DFT bin number(DFT fre-
quency) is given by
_ 2nk @)
Wi = T

Likewise, the continuous-time angular frequengy corresponding to the DFT bin numbe(DFT fre-
quency) is given by
2k
=T ®)
To interpret the results of the DFT-based spectral anabami®ctly, we first consider the frequency-
domain analysis of a sinusoidal sequence. Now an infinitgtlesinusoidal sequengg:] of normalized
angular frequency, is given by

2%

gln] = codwon + ¢). (6)
By expressing the above sequence as

gln] =1 (ej(won+¢) +e—j(won+¢)) @)

and making use of Table 3.3 of Text, we arrive at the expradsioits Fourier transform as

Gy =7 Y (/%80 —wo + 210) + e I¥8(w + w, + 270)) . )

{=—00

Thus, the Fourier transform is a periodic functiorwoivith a period2sr containing two impulses in each
period. In the frequency rangesr < w < , there is an impulse a = w, of complex amplitudere/¢
and an impulse ab = —w, of complex amplitudere=/¢.
To analyzeg[n] in the spectral domain using the DFT, we employ a finite-lengitrsion of the se-
quence given by
y[n] = coqwon + ¢), 0<n<N-1. (9)

The computation of the DFT of a finite-length sinusoid hasnbeansidered in Example 11.16 of Text.
In this example, using Program 10, we computed the DFT of a length-32 sinusoid of frequericiid
sampled at 64 Hz, as shown in Figure 11.32(a) of Text. As caeber from this figure, there are only two
nonzero DFT samples, one at liin= 5 and the other at bikh = 27. From Eq. B), bink = 5 corresponds
to frequency 10 Hz, while bik = 27 corresponds to frequency 54 Hz, or equivalentlyp Hz. Thus,
the DFT has correctly identified the frequency of the sindisoi

Next, using the same program, we computed the 32-point DRI lefigth-32 sinusoid of frequency
11 Hz sampled at 64 Hz, as shown in Figure 11.32(b) of Texts Tigure shows two strong peaks at
bin locationsk = 5 andk = 6, with nonzero DFT samples at other bin locations in the pasitialf
of the frequency range. Note that the bin locations 5 and fiespond to frequencies 10 Hz and 12 Hz,
respectively, according to Ecp); Thus the frequency of the sinusoid being analyzed is éxhatfway
between these two bin locations.

The phenomenon of the spread of energy from a single frequenmany DFT frequency locations
as demonstrated by Figure 11.32(b) of Text is caléakage To understand the cause of this effect, we
recall that the DFI"[k] of a length/V sequence[n] is given by the samples of its discrete-time Fourier
transform (Fourier transforni) (e/?) evaluated ab = 27k/N,k =0,1,..., N —1. Figure3 shows the
Fourier transform of the length-32 sinusoidal sequenceeafuifency 11 Hz sampled at 64 Hz. It can be
seen that the DFT samples shown in Figure 11.32(b) of Texhdex=d obtained by the frequency samples
of the plot of Figures.
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Figure 3: Fourier transform of a sinusoidal sequence windowed by @mngalar window.

To understand the shape of the Fourier transform shown ur&Ry we observe that the sequence of
Eq. 9) is a windowed version of the infinite-length sequeggd of Eq. 6) obtained using a rectangular
window w[n]:

I, 0<n<N -1,

win] = {O, otherwise. (10)

Hence, the Fourier transfori(e/?) of y[n] is given by the frequency-domain convolution of the Fourier
transformG (e’/®) of g[n] with the Fourier transforn@g (e/“) of the rectangular window [n]:

. 1 [~ ‘ ‘

re®) = [ Geune )y, (11)
2 J_n
where in(wN/2)

Up(e/?) = g /@(N=1)/2 Sin(w ) 12
r(e™) =e sin(w/2) (12)

SubstitutingG (e/®) from Eq. @) into Eq. (L1), we arrive at

. . . 1 . .

I'e’?) = %e‘/(lbqu(eJ(w_wu)) + Ee_‘/¢qu(€J(w+w”))- (13)

As indicated by Eq.13), the Fourier transforni”(e/®) of the windowed sequenqggn] is a sum of the
frequency shifted and amplitude scaled Fourier transfégte/©) of the windoww[n], with the amount

of frequency shifts given by-w,. Now, for the length-32 sinusoid of frequency 11 Hz sample@idaHz,

the normalized frequency of the sinusoidli/64 = 0.172. Hence, its Fourier transform is obtained by
frequency shifting the Fourier transforig (e/?) of a length-32 rectangular window to the right and to
the left by the amoun?.172 x 2z = 0.344x, adding both shifted versions, and then amplitude scaling
by a factor 1/2. In the normalized angular frequency raihge 27z, which is one period of the Fourier
transform, there are two peaks, onéa44xz and the other &z (1 — 0.172) = 1.6567, as verified by
Figure3. A 32-point DFT of this Fourier transform is precisely the DBhown in Figure 11.32(b) of
Text. The two peaks of the DFT at bin locatiohs= 5 andk = 6 are frequency samples of the main lobe
located on both sides of the peak at the normalized frequ@idp. Likewise, the two peaks of the DFT
at bin locationsk = 26 andk = 27 are frequency samples of the main lobe located on both sidég o
peak at the normalized frequency 0.828. All other DFT samate given by the samples of the sidelobes
of the Fourier transform of the window causing the leakagbefrequency components-aty, to other

bin locations, with the amount of leakage determined by étative amplitude of the main lobe and the
sidelobes. Since the relative sidelobe lexdgl, defined by the ratio in dB of the amplitude of the main
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Figure4: (a)—(e) DFT-based spectral analysis of a sum of two finiteftle sinusoidal sequences of normalized
frequencies 0.22 and 0.34, respectively, of length 16 eachafious values of DFT lengths.

lobe to that of the largest sidelobe, of the rectangular i very high, there is a considerable amount
of leakage to the bin locations adjacent to the bins showiagtaks in Figure 11.32(b) of Text.

The above problem gets more complicated if the signal bemadyaed has more than one sinusoid,
as is typically the case. We illustrate the DFT-based spkatralysis approach by means of Examgdles
through3. Through these examples, we examine the effects of theHeRgif the DFT, the type of
window being used, and its lengi¥ on the results of spectral analysis.

EXAMPLE 1 Effect of the DFT Length on Spectral Analysis
The signal to be analyzed in the spectral domain is given by

x[n] = 1 sin@2r fin) + sin@2x fon). 0<n<N-—1. (14)

Let the normalized frequencies of the two length-16 sindsldequences bg = 0.22 and f> = 0.34.
We compute the DFT of their sum[n] for various values of the DFT lengtR. To this end, we
use Program A-2 whose input data are the lergif the signal, lengthR of the DFT, and the two
frequenciesf; and f,. The program generates the two sinusoidal sequences, thainrssum, then
computes the DFT of the sum and plots the DFT samples. Inxaisple, we fixN = 16 and vary the
DFT lengthR from 16 to 128. Note that wheR > N the M-filefft(x,R) automatically zero-pads
the sequence with R-N zero-valued samples.
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Figure5: lllustration of the frequency resolution property: () = 0.28, f, = 0.34; (b) f1 = 0.29, f, = 0.34; ()
f1 =03, f, =0.34; and (d) f1 = 0.31, f> = 0.34.

Figure4(a) shows the magnitude&X [k]| of the DFT samples of the signa[n] of Eq. (14) for R = 16.
From the plot of the magnitudgX(e/?)| of the Fourier transform given in Figurb), it is evident
that the DFT samples given in Figutéa) are indeed the frequency samples of the frequency respon
as expected. As is customary, the horizontal axis in Fig(ag has been labeled in terms of the DFT
frequency sample (bin) numbér wherek is related to the normalized angular frequercyhrough
EqQ. @). Thus,w = 27 x8/16 = & corresponds té = 8, andw = 27 x 15/16 = 1.8757 corresponds
tok = 15.

From the plot of Figured(a), it is difficult to determine whether there is one or moireusoids in
the signal being examined and the exact locations of thessids. To increase the accuracy of the
locations of the sinusoids, we increase the size of the DR3Rtand recompute the DFT, as indicated
in Figure4(c). In this plot, there appear to be some concentrationsnaib = 7 and arounde = 11 in
the normalized frequency range from 0 to 0.5. Figi(& shows the DFT plot obtained f& = 64. In
this plot, there are two clear peaks occurring at 13 andk = 22 that correspond to the normalized
frequencies of 0.2031 and 0.3438, respectively. To impfoxéer the accuracy of the peak location,
we compute next a 128-point DFT, as indicated in Figi{e9, in which the peak occurs aroukd= 27
andk = 45, corresponding to the normalized frequencies of 0.2100a3kiL6, respectively. However,
this plot also shows a number of minor peaks, and it is notr digaexamining this DFT plot whether
additional sinusoids of lesser strengths are present iarigaal signal or not.

As Examplel points out, in general, an increase in the DFT length impsdkie sampling accuracy
of the Fourier transform by reducing the spectral separatf@djacent DFT samples.

EXAMPLE 2  Effect of Spectral Separation on the DFT of a Sum of Two Sinusoids

In this example, we compute the DFT of a sum of two finite-larghusoidal sequences, as given by
Eq. (14), with one of the sinusoids at a fixed frequency, while thejdiency of the other sinusoid is
varied. Specifically, we keep, = 0.34 and vary /1 from 0.28 to 0.31. The length of the signal being
analyzed is 16, while the DFT length is 128.
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Figure5 shows the plots of the DFTs computed, along with the fregiesnaf the sinusoids obtained
using Program A-2. As can be seen from these plots, the twesaids are clearly resolved in Fig-
ures5(a) and (b), while they cannot be resolved in Figus&y and (d). The reduced resolution occurs
when the difference between the two frequencies becomgshas 0.04.

As indicated by Eq.X1), the Fourier transforni"(e/?) of a lengthA sinusoid of normalized an-
gular frequencyw; is obtained by frequency translating the Fourier transfdrgie/®) of a lengthV
rectangular window to the frequencigso; and scaling their amplitudes appropriately. In the case of a
sum of two lengthA sinusoids of normalized angular frequencigsandw,, the Fourier transform is
obtained by summing the Fourier transforms of the individirausoids. As the difference between the
two frequencies becomes smaller, the main lobes of the &omainsforms of the individual sinusoids get
closer and eventually overlap. If there is a significant agrit will be difficult to resolve the peaks.
It follows therefore that the frequency resolution is esisdlg determined by the main lobdy, of the
Fourier transform of the window.

Now from Table 10.2 of Text, the main lobe widthy_ of a length/V rectangular window is given
by 47/N. In terms of normalized frequency, the main lobe width ofragkd-16 rectangular window is
0.125. Hence, two closely spaced sinusoids windowed with a rectian window of length 16 can be
clearly resolved if the difference in their frequencieshsat half of the main lobe width, that i8,0625.

Even though the rectangular window has the smallest maie Voidth, it has the largest relative
sidelobe amplitude and, as a consequence, causes cobideekage. As seen from Exampleand2,
the large amount of leakage results in minor peaks that mdglbely identified as sinusoids. We now
study the effect of windowing the signal with a Hamming windo

EXAMPLE 3  Minimization of the Leakage Using a Tapered Window

We compute the DFT of a sum of two sinusoids windowed by a Hargmiindow. The signal being
analyzed isc[n] - w[n], wherex|[n] is given by

x[n] = 0.85sin(27 f1n) + sin2x fan),

and w(n] is a Hamming window of lengtv. The two normalized frequencies af¢ = 0.22 and
fo =0.26.

Figure6(a) shows the 16-point DFT of the windowed signal with a windength of 16. As can be seen
from this plot, the leakage has been reduced consideraldljt ib difficult to resolve the two sinusoids.
We next increase the DFT length to 64, while keeping the wintgngth fixed at 16. The resulting
plot is shown in Figureg(b), indicating a substantial reduction in the leakage hitih wo change in
the resolution. From Table 10.2, the main lobe widtfy of a lengthA Hamming window i87z/N .
Thus, forN = 16, the normalized main lobe width §s25. Hence, with such a window, we can resolve
two frequencies if their difference is of the order of hak timain lobe width, that i€).125 or better. In
our example, the difference @804, which is considerably smaller than this value.

In order to increase the resolution, we increase the winéngth to 32, which reduces the main lobe
width by half. Figure6(c) shows its 32-point DFT. There now appears to be two pdakseasing the
DFT size to 64 clearly separates the two peaks, as indicate@jure6(d). This separation becomes
more visible with an increase in the DFT size to 256, as shoviigure6(e). Finally, Figures(f) shows
the result obtained with a window length of 64 and a DFT lergtR56.

It is clear from Exampled through3 that performance of the DFT-based spectral analysis depend
on several factors, the type of window being used and itstterand the size of the DFT. To improve

5For a review of some commonly used windows, see Sections4l@r2l 10.2.5 of Text.
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Figure6: (a)—(f) Spectral analysis using a Hamming window.

the frequency resolution, one must use a window with a vergllsmain lobe width, and to reduce the
leakage, the window must have a very small relative sideleded. The main lobe width can be reduced
by increasing the length of the window. Furthermore, andase in the accuracy of locating the peaks is
achieved by increasing the size of the DFT. To this end, itéfgrable to use a DFT length that is a power
of 2 so that very efficient FFT algorithms can be employed topate the DFT. Of course, an increase in
the DFT size also increases the computational complexitige$pectral analysis procedure.

3 Analysis of Speech Signals Using the STFT

The short-term Fourier transform described in Section 6fIlkext is often used in the analysis of speech,
since speech signals are generally non-stationary. Asaieti in Section 1.3 of Text, the speech signal,
generated by the excitation of the vocal tract, is compo$édmtypes of basic waveforms: voiced and
unvoiced sounds. A typical speech signal is shown in Figuré &f Text. As can be seen from this figure,
a speech segment over a small time interval can be consideradtationary signal, and as a result, the
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Figure 7: (a) Narrow-band spectrogram and (b) wide-band spectrogfarspeech signal.

DFT of the speech segment can provide a reasonable repaisrmif the frequency domain characteristic
of the speech in this time interval.

As in the case of the DFT-based spectral analysis of detésticirsignals discussed earlier, in the
STFT analysis of non-stationary signals, such as speeehyitidow also plays an important role. Both
the length and shape of the window are critical issues thed @ be examined carefully. The function
of the windoww|n] is to extract a portion of the signal for analysis and enduaéthe extracted section
of x[n] is approximately stationary. To this end, the window lengtshould be small, in particular for
signals with widely varying spectral parameters. A deadasthe window length increases the time-
resolution property of the STFT, whereas the frequencgtugien property of the STFT increases with
an increase in the window length. A shorter window thus piesiawide-band spectrogranwhile a
longer window results in aarrow-band spectrogram

A shorter window developing a wide-band spectrogram prewia better time resolution, whereas a
longer window developing a narrow-band spectrogram resalain improved frequency resolution. In
order to provide a reasonably good estimate of the changée ivocal tract and the excitation, a wide-
band spectrogram is preferable. To this end, the windowisizelected to be approximately close to one
pitch period, which is adequate for resolving the formamésigh not adequate to resolve the harmonics of
the pitch frequencies. On the other hand, to resolve the dwins of the pitch frequencies, a narrow-band
spectrogram with a window size of several pitch periods srdbéle.

The two frequency-domain parameters characterizing thei€&atransform of a window are its main
lobe width Ay and the relative sidelobe amplitudie,. The former parameter determines the ability
of the window to resolve two signal components in the vigirtf each other, while the latter controls
the degree of leakage of one component into a nearby signgy@oent. It thus follows that in order to
obtain a reasonably good estimate of the frequency spedfartime-varying signal, the window should
be chosen to have a very small relative sidelobe amplitutie aviength chosen based on the acceptable
accuracy of the frequency and time resolutions.

The following example illustrates the STFT analysis of aeghesignal.

EXAMPLE 4  Short-TimeFourier Transform Analysis of a Speech Signal

Themtlb.mat file in the Signal Processing Toolbaf MATLAB contains a speech signal of duration
4001 samples sampled at 7418 Hz. We compute its STFT usingraritaey window of length 256
with an overlap of 50 samples between consecutive windovggtals using Program 3 in Sectidd.
Figures7(b) and (c) show, respectively, a narrow-band spectrograiraavide-band spectrogram of the
speech signal of Figurga). The frequency and time resolution trade-off betweernlo spectrograms
of Figure7 should be evident.
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4 Spectral Analysis of Random Signals

As discussed in Sectio?, in the case of a deterministic signal composed of sinuscil@mponents, a
Fourier analysis of the signal can be carried out by takieglikcrete Fourier transform (DFT) of a finite-
length segment of the signal obtained by appropriate winadgwprovided the parameters characterizing
the components are time-invariant and independent of thdaw length. On the other hand, the Fourier
analysis of nonstationary signals with time-varying pagtars is best carried out using the short-time
Fourier transform (STFT) described in Sectidn

Neither the DFT nor the STFT is applicable for the spectrallysis of naturally occurring random
signals as here the spectral parameters are also randonse Type of signals are usually classified
as noiselike random signals such as the unvoiced speecél gignerated when a letter such as "/f/"
or "/s/" is spoken, and signal-plus-noise random signaish s seismic signals and nuclear magnetic
resonance signafs.Spectral analysis of a noiselike random signal is usuallyieé out by estimating
the power density spectrum using Fourier-analysis-basagarametric methods, whereas a signal-plus-
noise random signal is best analyzed using parametric-hi@ded methods in which the autocovariance
sequence is first estimated from the model and then the Fdraiesform of the estimate is evaluated. In
this section, we review both of these approaches.

4.1 Nonparametric Spectral Analysis

Consider a wide-sense stationary (WSS) random sigpdlwith zero mean. According to the Wiener—
Khintchine theorem of Eq. (C.33) in Appendix C of Text, theyso spectrum of[n] is given by

Peg(@) = Y $egllle ", (15)
{=—00

whereg[{] is its autocorrelation sequence, which from Eq. (C.20b) ppéndix C of Text is given by

beell]l = E(gln + Llg*[n)). (16)

In Eq. (16), E(-) denotes the expectation operator as defined in Eq. (C.4a)@érAdix C of Text.

Periodogram Analysis

Assume that the infinite-length random discrete-time digija] is windowed by a lengthV window
sequencev[n], 0 < n < N — 1, resulting in the lengthV sequence[n] = g[n] - w[rn]. The Fourier
transforml”(e/®) of y[n] is given by

' N-1 _ N—1 )
re’?) = Z ylnle™7¢" = Z g[n] - wlnle™ 7", 17)
n=0 n=0

The estimatésgg (w) of the power spectruiRe ¢ (w) is then obtained using

A 1 .
Pgg(@) = WIF(E”")IZ, (18)

6E.A. Robinson, A historical perspective of spectrum estioma Proceedings of the IEERol. 70, pp. 885-907, 1982.
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where the constartt is a normalization factor given by
| Nl
C= 2 lwh? (19)
n=0

and included in Eq.X8) to eliminate any bias in the estimate occurring due to tiesofishe windoww|n].
The quantityP, (e/©) defined in Eq. {8) is called theperiodogramwhenw(n] is a rectangular window
and is called anodified periodograrfor other types of windows.

In practice, the periodograﬁﬁgg(w) is evaluated at a discrete set of equally spakedequencies,
wr = 27wk/R,0 <k < R — 1, by replacing the Fourier transforf(e/®) with an R-point DFT I [k] of
the lengthA sequence|[n] :

Peglk] = o ITIKIP (20

As in the case of the Fourier analysis of sinusoidal signeslsussed earlierR is usually chosen to be
greater thanv to provide a finer grid of the samples of the periodogram.
It can be shown that the mean value of the periodogPag(w) is given by

1
2nCN

whereP,, (w) is the desired power spectrum afide’?) is the Fourier transform of the window sequence
w[n]. The mean value being nonzero for any finite-length windogusace, the power spectrum estimate
given by the periodogram is said to béased By increasing the window lengtlv, the bias can be
reduced.

We illustrate the power spectrum computation in Exanfple

E(Pes(@) = 5y | Peslw @ v, D)

EXAMPLES5 Power Spectrum of a Noise-Corrupted Sinusoidal Sequence

Let the random signat(n] be composed of two sinusoidal components of angular frezieed.06
and0.14x radians, corrupted with a Gaussian distributed randomasiginzero mean and unity vari-
ance, and windowed by a rectangular window of two differengths:N = 128 and1024. The random
signal is generated using the M-filendn . Figures8(a) and (b) show the plots of the estimated power
spectrum for the two cases. Ideally the power spectrum drstwdw four peaks at equal to 0.06, 0.14,
0.86, and 0.94, respectively, and a flat spectral densityl ather frequencies. However, Figugéa)
shows four large peaks and several other smaller peaks.oviemehe spectrum shows large amplitude
variations throughout the whole frequency range. Mss increased to a much larger value, the peaks
get sharper due to increased resolution of the DFT, whilesfieetrum shows more rapid amplitude
variations.

To understand the cause behind the rapid amplitude varg@atbthe computed power spectrum en-
countered in ExamplB, we assumev[n] to be a rectangular window and rewrite the expression for the
periodogram given in Eq1@) using Eq. L7) as

| No1N- ‘
'ng(a)) — N Z Z g[m]g*[n]e—jw(m—n)
n=0 m=0

N-1 | N1k _

Y (v X sl +ketil et
k=—N+1 n=0

N-1 _
= ) dgglkle k. (22)

k=—N+1



4. Spectral Analysis of Random Signals 15

N =128 N=1024
20 T T T T 30 i T -

Power spectrum, dB
(=]

Power spectrum, dB
(=]

20 ; ; ; ; i i ; ;
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Normalized frequency Normalized frequency

(a) (b)

Figure 8: Power spectrum estimate of a signal containing two sinasaiomponents corrupted with a white noise
sequence of zero mean and unit variance Gaussian distrib\#) Periodogram with a rectangular window of
length N = 128 and (b) periodogram with a rectangular window of length= 1024.

Now $gg [k] is the periodic correlation of[#] and is an estimate of the true correlatipg), [k]. Hence,
75gg (w) is actually the Fourier transform @a‘gg [k]. A few samples of[n] are used in the computation
of égg [k] whenk is nearN, yielding a poor estimate of the true correlation. This, imtuesults in rapid

amplitude variations in the periodogram estimate. A smeoplower spectrum estimate can be obtained
by the periodogram averaging method discussed next.

Periodogram Averaging

The power spectrum estimation method, originally propdse8artlet! and later modified by Welch,

is based on the computation of the modified periodograrR afverlapping portions of lengthv input
samples and then averaging the&eeriodograms. Let the overlap between adjacent segmenks be
samples. Consider the windowetth segment of the input data

)/(r)[n]:g[n+rK]w[n], 0<n<N-—-1, 0<r<R-1, (23)

with a Fourier transform given by ) (e/¢). Its periodogram is given by
R 1 .
PR@) = o107 (24)

The Welch estimate is then given by the average oRaileriodogramﬁSé(,Q (w),0<r<R-1:

. 1 R
Pr(w) = = > PR ). (25)

r=1

It can be shown that the variance of the Welch estimate of Z5).i$¢ reduced approximately by a factor
R if the R periodogram estimates are assumed to be independent ob#eeh For a fixed-length input

“M.S. Bartlett, Smoothing periodograms from the time sewigh continuous spectrajature (Londor), vol. 161, pp. 686-687,
1948.

8p.D. Welch, The use of fast Fourier transform for the esiinanf power spectra: A method based on time averaging owet,sh
modified periodogramdEEE Trans. on Audio and Electroacoustie®l. AU-15, pp. 70-73, 1967.
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Figure9: Power spectrum estimates: (a) Bartlett's method and (brhemethod.

sequenceR can be increased by decreasing the window lengtlvhich in turn decreases the DFT
resolution. On the other hand, an increase in the resoligiobtained by increasiny. Thus, there is a
trade-off between resolution and the bias.

It should be noted that if the data sequence is segmented dgtangular window into contiguous
segments with no overlap, the periodiogram estimate giyead 25) reduces to Barlett estimate.

Periodogram Estimate Computation Using MATLAB

The Signal Processing Toolbaf MATLAB includes the M-filepsd for modified periodogram estimate
computation. It is available with several options. We ilfate its use in Examplé

EXAMPLE 6 Estimation of the Power Spectrum of a Noise-Corrupted Sinusoidal Sequence

We consider here the evaluation of the Bartlett and Weldmeses of the power spectrum of the random
signal considered in Exampée To this end, Program 4 in Sectidd can be used. This program is run
first with no overlap and with a rectangular window generatsidg the functiorboxcar . The power
spectrum computed by the above program is then the Barsiigth&te, as indicated in Figug¢a). It is
then run with an overlap of 128 samples and a Hamming winddwe ¢orresponding power spectrum
is then the Welch estimate, as shown in Fig8fie). It should be noted from Figui@that the Welch
periodogram estimate is much smoother than the Bartldatigggram estimate, as expected. Compared
to the power spectrums of FiguBethere is a decrease in the variance in the smoothed power spes

of Figure9, but the latter are still biased. Because of the overlap éetwadjacent data segments,
Welch’s estimate has a smaller variance than the othertoitld be noted that both periodograms of
Figure9 show clearly two distinct peaks ai06 and0.14.

4.2 Parametric Model-Based Spectral Analysis

In the model-based method, a causal LTI discrete-time systi¢h a transfer function

H(z) = Z hn]z™"
n=0

_ PG Yoozt
D(z) 1+ 224:1 dyzk

(26)
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is first developed, whose output, when excited by a whiteewés|uence[n] with zero mean and variance
o2, matches the specified data sequegd. An advantage of the model-based approach is that it can
extrapolate a short-length data sequence to create a ldatgessequence for improved power spectrum
estimation. On the other hand, in nonparametric metho@stsg leakages limit the frequency resolution
if the data length is short.

The model of Eq.Z6) is called amautoregressive moving-averaf®RMA) process of orde(L, M)
if P(z) # 1, anall-pole or autoregressiv€AR) process of ordeM if P(z) = 1, and an all-zero or
moving-averag€MA) process of ordet. if D(z) = 1. For an ARMA or an AR model, for stability,
the denominatoD(z) must have all its zeros inside the unit circle. In the time domthe input—output
relation of the model is given by

M L
gl ==Y digln—kl+ > preln — k. (27)
k=1 k=0

As indicated in Section C.8 of Appendix C of Text, the outgiit] of the model is a WSS random
signal. From Eq. (C.85) of Appendix C of Text, it follows thhe power spectru®q ¢ (w) of g[n] can be
expressed as

Jwy |2
Pus (@) = o2l () =2 T 28)
whereH (e/®) = P(e/?)/D(e’®) is the frequency response of the model, and
L M
P(e/?) = Z pre ok, D(e’®) =1+ Z dye ok,
k=0 k=1
In the case of an AR or an MA model, the power spectrum is thusngby
02| P(e/®)|?, foran MA model,
Pgg(w) = oZ (29)

D2 for an AR model.

The spectral analysis is carried out by first determiningrttealel and then computing the power
spectrum using either Eg28) for an ARMA model or using Eq.29) for an MA or an AR model. To
determine the model, we need to decide the type of the madel |fiole-zero IIR structure, all-pole 1IR
structure, or all-zero FIR structure) to be used; determaimeppropriate order of its transfer function
H(z) (i.e., bothL and M for an ARMA model orM for an AR model orL for an MA model); and
then, from the specified lengtN-datag[n], estimate the coefficients @f(z). We restrict our discussion
here to the development of the AR model, as it is simpler atehafsed. Applications of the AR model
include spectral analysis, system identification, speealyais and compression, and filter design.

Relation Between Model Parameters and the Autocorrelation Sequence

The model filter coefficient$p,} and {dy} are related to the autocorrelation sequeggg((] of the
random signag[n]. To establish this relation, we obtain from Eg7),

M L
begll] = = didgell — K1+ D prdeglt —k].  —o0 <L < oo, (30)
k=1 k=0

9 For a discussion on the development of the MA model and the ARMdel, see R. Kumaresan, Spectral analysis, In S.K.
Mitra and J.F. Kaiser, editorgjandbook for Digital Signal Processinghapter 16, pages 1143-1242. Wiley-Interscience, New
York NY, 1993.
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by multiplying both sides of the equation wighi[n — £] and taking the expected values. In E8Q)( the
cross-correlation,¢ [£] betweeng[n] ande[n] can be written as

Pegll] = E(g"[nleln + £])
= Z h*[k] E(e*[n —kle[n + €]) = o2h*[-(], (31)
k=0
whereh[n] is the causal impulse response of the LTI model as defined.i@2Bpando? is the variance

of the white noise sequeneg:] applied to the input of the model.
For an AR modell. = 0, and hence Eq3() reduces to

— L didgell — K, for £ > 0,
Gegll] = = 3R, dpggll — k] + 02, for £ =0, (32)
Pge [l for £ < 0.

From Eqg. 82), we obtain forl < ¢ < M, a set ofM equations,

M
Z drdgg[l — k] = —eg[l], 1<{=<M, (33)
k=1

which can be written in matrix form as

¢gg[0] ¢gg[_1] ¢gg [_M + 1] di ¢gg[1]
¢gg[1] ¢gg[0] ¢gg [_M + 2] d> ¢gg [2]
: : - : : - : (34)
¢gg[M - 1] ¢gg [M _2] ¢gg[0] dm ¢gg[M]
For¢ = 0, we also get from Eq.32)
M
beel0 + Y dipggl—k] = 0. (35)
k=1
Combining Eq. 85) with Eq. (34) we arrive at
2
Dosl0]  Gogl-1l o gl M] N %
GeelM] GeelM =11 - 0] L 0

The matrix equation of Eq3@) is more commonly known as thale—Walker equatianit can be seen
from Eq. 36) that knowing thelM + 1 autocorrelation samplefs[£] for 0 < £ < M, we can determine
the model parametetk for 1 < k < M by solving the matrix equation. TH@&7 + 1) x (M + 1) matrix
in Eq. (36) is aToeplitz matrix'°

10A Toeplitz matrix has the same element values along eactinegdoping diagonal.
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Because of the structure of the Toeplitz matrix, the matguagion of Eq. 86) can be solved using
the fastLevinson—Durbin algorithm®-1? This algorithm develops the AR model recursively. Let thiefil

coefficients at theth iteration be denoted by(i), 0 < k < i. Define two other parameters for thih
stage, theeflection coefficienk; and theprediction error&;. The recursion algorithm consists of the
following steps:

Step 1: Start the recursion with:

Ky =d® = ¢gg[1]/deel0l. &1 = dggl01(1 — |K1]?).

Step 2: Fori > 0, evaluate théi + 1)th reflection coefficient using

20D Gggli + 1] + Zi:l dr(i)¢gg[i +1—r]

Kit1 = i+1 <
i

Step 3: Fori > 0, evaluate theth filter coefficient of thei + 1)-th order model with- < i using:

dr(H'l) = dr(i) + Kr—i-l(di(i)l—r)*‘

Step 4: Determine thdi + 1)th prediction error using:

Eiv1 = &1 —|Ki]?).

Step 5: If i + 1 = M stop the iteration, otherwise go back to Step 2.

The causal all-pole LTI systemi/(z) = 1/D(z) resulting from the application of the Levinson—
Durbin recursions is guaranteed to be BIBO stable. Moredber recursion automatically leads to a
realization in the form of a cascaded FIR lattice structasesshown in Figure 8.40.

Power Spectrum Estimation Using an AR Model

The AR model parameters can be determined usingrthe-Walker methqdvhich makes use of the
estimates of the autocorrelation sequence samples, asattigal values are not known a priori. The
autocorrelation at lag is determined from the specified data samgleg for0 <n < N — 1 using

N—-1-|{|
eslll = D &lglh+4,  0<L=N-1 (37)

n=0

1IN, Levinson, The Wiener RMS criterion in filter design anddiction, J. Math. Phys.vol. 25, pp. 261-278, 1947.
12 3. Durbin, Efficient estimation of parameters in moving ager modelBiometrika vol. 46, pp. 306-316, 1959.
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The above estimates are used in B4) (n place of the true autocorrelation samples, with the ARleto
parameterd, replaced with their estimatefs. The resulting equation is next solved using the Levinson—
Durbin algorithm to determine the estimates of the AR modmhmeters?k. The power spectrum esti-
mate is then evaluated using

~

A Eu
ng ((l)) = R 2 (38)
‘1 + 211:4:1 di e~ IOk
wherefM is the prediction error for tha/ th-order AR model:
R M
Em = deglOl [T (1= 1K) (39)

i=1

The Yule—Walker method is related to the linear predictioobpem. Here the problem is to predict
the N-th sampleg[N] from the previous data sampleg[n],0 <n < M — 1, with the assumption that
data samples outside this range are zeros. The predicteelgfal of the data sample[n] can be found
by a linear combination of the previod$ data samples as

M A~
gl = =" digln — k]
k=1

= g[n] —efn], (40)

wheree(n] is the prediction error. For the specified data sequence(4Byleads toN + M prediction
equations given by

M
g+ gl —klde =efn].  0<n<N+M-—1 (41)
k=1

The optimum linear predictor coefficierrfg are obtained by minimizing the error

1 N+M-—1

~ 2 lelll.

n=0

It can be shown that the solution of the minimization probisgiven by Eq. 84). Thus, the best all-pole
linear predictor filter is also the AR model resulting frone olution of Eq. 84).

It should be noted that the AR model is guaranteed stable tHauall-pole filter developed may not
model an AR process exactly of the same order due to the wimdoef the data sequence to a finite
length, with samples outside the window range assumed tefos z

The functionlpc in MATLAB finds the AR model using the above method.

EXAMPLE 7 Development of an AR Model of an FIR Filter

We consider the approximation of an FIR digital filter of ard8 with an all-pole IR digital filter of
order 7. The coefficients of the FIR filter are obtained ushegftinctionfirpm , and the all-pole IR
filter is designed using the functidpc . Program 5 in Sectiod4 can be used for the design. The
magnitude response plots generated by running this prograrshown in Figur&O0.

Several comments are in order here. First, the linear padioefficient§d; } match the power spectral
densities of the all-pole model with that of the sequefgg. Since, the sequence of the FIR filter
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Figure 10: Magnitude response of the FIR filter (shown with solid linejl@he all-pole [IR model (shown with
dashed line).

coefficients{b; } is not a power signal, and to convert the energy spectrumeoséguencéb;} to a
power spectrum, the sequenflg } needs to be divided by its lengthi. Hence, to approximate the
power spectrum density of the sequeribgl with that of the AR model, we need to scale the ARMA
filter transfer function with the factot/ NE, whereE is the variance of the prediction error. Second,
it can be seen from this figure that the AR model has reasomahtghed the passband response, with
peaks occurring very close to the peaks of the magnitudensgpof the FIR system. However, there
are no nulls in the stopband response of the AR model evergththe stopband response of the FIR
system has nulls. Since the nulls are generated by the zktios ansfer function, an all-pole model
cannot produce nulls.

In order to apply the above method to power spectrum estimaiti is necessary to estimate first the
model orderM . A number of formulae have been advanced for order estim&titunfortunately, none
of the these formulae yields a really good estimate of the tnodel order in many applications.

5 Musical Sound Processing

Recall from our discussion in Section 1.4.1 that almost alkital programs are produced in basically
two stages. First, sound from each individual instrumemeorded in an acoustically inert studio on
a single track of a multitrack tape recorder. Then, the sggfram each track are manipulated by the
sound engineer to add special audio effects and are comlireechix-down system to finally generate
the stereo recording on a two-track tape recotfier® The audio effects are artificially generated using
various signal processing circuits and devices, and theyrareasingly being performed using digital
signal processing techniqu¥s.
Some of the special audio effects that can be implementei@tijgare reviewed in this section.

18R, Kumaresan, Spectral analysis, In S.K. Mitra and J.F.é¢aiditors,Handbook for Digital Signal Processinghapter 16,
pages 1143-1242. Wiley-Interscience, New York NY, 1993.

14B. Blesser and J.M. Kates, Digital processing in audio digria A.V. Oppenheim, editorApplications of Digital Signal
Processingchapter 2. Prentice Hall, Englewood Cliffs NJ, 1978.

15J.M. Eargle Handbook of Recording Engineeringan Nostrand Reinhold, New York NY, 1986.
163 .J. Orfanidis|ntroduction to Signal Processin@rentice Hall, Englewood Cliffs NJ, 1996.
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Figure11: Single echo filter: (a) filter structure, (b) typical impulgsponse, and (c) magnitude responserfes 8
anda = 0.8.

5.1 Time-Domain Operations

Commonly used time-domain operations carried on musiaaidsignals are echo generation, reverber-
ation, flanging, chorus generation, and phasing. In eachasft operations, the basic building block is a

delay.

Single Echo Filter

Echoes are simply generated by delay units. For exampléjithet sound and a single echo appeaiihg
sampling periods later can be simply generated by the Figt fit Figure11(a), which is characterized

by the difference equation
y[n] = x[n] + ax[n — R], la] <1, (42)

or, equivalently, by the transfer function
H(z) =14 az R (43)

In Egs. @2) and @3), the delay parametek denotes the time the sound wave takes to travel from the
sound source to the listener after bouncing back from theatifig wall, whereas the parameterwith
la| < 1, represents the signal loss caused by propagation andtieflec

The impulse response of the single echo filter is sketchedguar&11(b). The magnitude response
of a single echo FIR filter fo. = 0.8 and R = 8 is shown in Figurell(c). The magnitude response
exhibits R peaks andr dips in the rang® < o < 2x, with the peaks occurring a = 2xk/R and
the dips occurring ab = 2k + )n/R, k = 0,1,..., R — 1. Because of the comb-like shape of the
magnitude response, such a filter is also known esnab filter The maximum and minimum values of
the magnitude response are givenlby o« = 1.8 and1 — o = 0.2, respectively.

Program A-87 can be used to investigate the effect of a single echo on theckpsignal shown in
Figure 1.16 of Text.

1"Reproduced with permission of Prof. Dale Callahan, Uniteiaf Alabama, Birmingham, AL.
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Figure 12: Multiple echo filter generatingy — 1 echoes: (a) filter structure and (b) impulse response avith0.8
for N = 6andR = 4.

Multiple Echo Filter

To generate a fixed number of multiple echoes spateadmpling periods apart with exponentially de-
caying amplitudes, one can use an FIR filter with a transfection of the form

1— OlNZ_NR

Hiz)=14az R4 022728 4. N1~ (N-DR (44)

l—az R
An IR realization of this filter is sketched in Figui®(a). The impulse response of a multiple echo filter
with ¢ = 0.8 for N = 6 andR = 4 is shown in Figurd 2(b).

An infinite number of echoes spac&dsampling periods apart with exponentially decaying aragkts
can be created by an IIR filter with a transfer function of thierf

Hz)=14az R4z 2R 4 ¢33k 4 ...
1

= m, |O{| < 1. (45)
Figurel3(a) shows one possible realization of the above IIR filter séfirst 61 impulse response samples
for R = 4 are indicated in Figur&3(b). The magnitude response of this IR filter fer= 7 is sketched
in Figure13(c). The magnitude response exhibiipeaks andr dips in the rang® < w < 2x, with the
peaks occurring ab = 27k /R and the dips occurring at = 2k + 1)n/R,k = 0,1,...,R— 1. The
maximum and minimum values of the magnitude response aeadiyl /(1 — @) = 5andl/(1 + «) =
0.5556, respectively.

The fundamental repetition frequenof the 1IR multiple echo filter of Eq.45) is given by Fr =
Fr/R Hz, orog = 2/R radians. In practice, the repetition frequernfcy is often locked to the fun-
damental frequency of an accompanying musical instrunseieh) as the drum beat. For a specifiégl
the delay parametek can be determined frorR = Fg/ Fr, resulting in a time delay oRT = R/ Fr
seconds$

Program 7 can be used to investigate the effect of multiple echos orspleech signal shown in
Figure 1.16 of Text.

Reverberation

As indicated in Section 1.4.1, the sound reaching the lestéma closed space, such as a concert hall,
consists of several components: direct sound, early raftetand reverberation. The early reflections

18Reproduced with permission of Prof. Dale Callahan, Uniteisf Alabama, Birmingham, AL.



24 1: Applications of Digital Signal Processing

yin]

1 4
Q %
B 0.8 g
% 0.6 gb
< 04r T =2

(73
0 [SSSaSSSASSSaSS oS TSRS S S, %?@?%?@(P\fuu@w SSSaSSSy 0 i i i
0 10 20 30 40 50 60 0 0.51 n 1.5 o
Time index n Normalized frequency
(b) (c)

Figure 13: IIR filter generating an infinite number of echoes: (a) filteusture, (b) impulse response with= 0.8
for R = 4, and (c) magnitude response with= 0.8 for R = 7.

are composed of several closely spaced echoes that aralbadielayed and attenuated copies of the
direct sound, whereas the reverberation is composed ottjepacked echoes. The sound recorded in
an inert studio is different from that recorded inside a etbspace, and, as a result, the former does not
sound “natural” to a listener. However, digital filteringncke employed to convert the sound recorded
in an inert studio into a natural-sounding one by artifigi@iteating the echoes and adding them to the
original signal.

The IIR comb filter of Figurel3(a) by itself does not provide natural-sounding reverheanatfor
two reasons? First, as can be seen from Figut8(c), its magnitude response is not constant for all
frequencies, resulting in a “coloration” of many musicalisds that are often unpleasant for listening
purposes. Second, the output echo density, given by the @uofilechoes per second, generated by a unit
impulse at the input, is much lower than that observed in brogam, thus causing a “fluttering” of the
composite sound. It has been observed that approximatély d€hoes per second are necessary to create
a reverberation that sounds free of flutteTo develop a more realistic reverberation, a reverberaitibr w
an allpass structure, as indicated in Figliga), has been proposédlts transfer function is given by

lo| < 1. (46)

In the steady state, the spectral balance of the sound sgmalns unchanged due to the unity magnitude
response of the allpass reverberator.

Program A-8° can be used to investigate the effect of an allpass revedseya the speech signal
shown in Figure 1.16.

The IIR comb filter of Figurel3(a) and the allpass reverberator of Figliééa) are basic reverberator
units that are suitably interconnected to develop a nagoahding reverberation. Figulé shows one
such interconnection composed of a parallel connectioowf iR echo generators in cascade with two

19\.R. Schroeder, Natural sounding artificial reverberatidmurnal of the Audio Engineering Societyol. 10, pp. 219-223,
1962

20Reproduced with permission of Prof. Dale Callahan, Uniteisf Alabama, Birmingham, AL.
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Figure 14: Allpass reverberator: (a) block diagram representatiah(Bhimpulse response with = 0.8 for R = 4.
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Figure 15: A proposed natural-sounding reverberator scheme.

allpass reverberatorf8.By choosing different values for the delays in each sectitriained by adjusting
R;) and the multiplier constants, it is possible to arrive at a pleasant-sounding reverbmradiuplicating

that occurring in a specific closed space, such as a condert ha
Program A-$ can be used to investigate the effect of the above natutaleing reverberator on the

speech signal shown in Figure 1.16.

21Reproduced with permission of Prof. Dale Callahan, Uniteisf Alabama, Birmingham, AL.
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Figure 16: (a) Lowpass reverberator and (b) a multitap reverberatoctsire.

An interesting modification of the basic IIR comb filter of Big 13(a) is obtained by replacing the
multiplier « with a lowpass FIR or IR filteiG(z), as indicated in Figur&6(a). It has a transfer function
given by

HE) = (@7)

—z7RG(z)’
obtained by replacing in Eq. @5 with G(z). This structure has been referred to as tiweth filter
and has been introduced to provide a natural tonal charectbe artificial reverberation generated by
it.22 This type of reverberator should be carefully designed tidathe stability problem. To provide a
reverberation with a higher echo density, the teeth filtertheen used as a basic unit in a more complex
structure such as that indicated in Figarb).

Additional details concerning these and other such congposverberator structures can be found in
literature!®-23

Flanging

There are a number of special sound effects that are oftehinglee mix-down process. One such effect
is calledflanging Originally, it was created by feeding the same musicalgiedawo tape recorders and
then combining their delayed outputs while varying theatéihceAr between their delay times. One way
of varying At is to slow down one of the tape recorders by placing the opesahumb on the flange
of the feed reel, which led to the name flangfigrhe FIR comb filter of Figurd 1(a) can be modified
to create the flanging effect. In this case, the unit genggdtie delay ofR samples, or equivalently, a
delay of RT seconds, wher€ is the sampling period, is made a time-varying def@y), as indicated in
Figurel?. The corresponding input—output relation is then given by

y[n] = x[n] + ax[n — B(n)]. (48)

22|.D.J. Eggermont and P.J. Berkhout, Digital audio circu@emputer simulations and listening tes®ilips Technical Review
vol. 41, No. 3, pp. 99-103, 1983/84.

233.A. Moorer, About this reverberation busine8smputer Music Journalol. 3, No. 2, pp. 13-28, 1979.
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Figure 17: Generation of a flanging effect.
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Figure 18: Generation of a chorus effect.

Periodically varying the delag(n) betweerd and R with a low frequencyy, such as

pin) = 5 (1 - costwom) (49)

generates a flanging effect on the sound. It should be notdddh the value of(n) at an instant,

in general, has a non-integer value, in an actual implentientahe output sample valugn] should be

computed using some type of interpolation method such asthbned in Section 13.5 of Text.
Program A-18* can be used to investigate the effect of flanging on the musieand signatit.wav.

Chorus Generator

The choruseffect is achieved when several musicians are playing threesausical piece at the same
time but with small changes in the amplitudes and small tipdifferences between their sounds. Such
an effect can also be created synthetically lmharus generatofrom the music of a single musician. A
simple modification of the digital filter of Figur®7 leads to a structure that can be employed to simulate
this sound effect. For example, the structure of FigiBean effectively create a chorus of four musicians
from the music of a single musician. To achieve this effdut, delays3; (n) are randomly varied with
very slow variations.

The phasingeffect is produced by processing the signal through a ndraod notch filter with vari-
able notch characteristics and adding a scaled portioneofithich filter output to the original signal, as
indicated in Figure9.1¢ The phase of the signal at the notch filter output can dramilbtialter the phase
of the combined signal, particularly around the notch festgy when it is varied slowly. The tunable
notch filter can be implemented using the technique destiib8ection 8.7.2 of Text. The notch filter in
Figure19 can be replaced with a cascade of tunable notch filters tage@n effect similar to flanging.
However, in flanging, the swept notch frequencies are alveaysmlly spaced, whereas in phasing, the
locations of the notch frequencies and their correspon@idB bandwidths are varied independently.

24Reproduced with permission of Prof. Dale Callahan, Unitgisf Alabama, Birmingham, AL.
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Figure 19: Generation of the phasing effect.

5.2 Frequency-Domain Operations

The frequency responses of individually recorded instmisier musical sounds of performers are fre-
quently modified by the sound engineer during the mix-dowscess. These effects are achieved by
passing the original signals through an equalizer, brieflyenwed in Section 1.4.1 of Text. The purpose
of the equalizer is to provide “presence” by peaking the neigifiency components in the range of 1.5 to
3 kHz and to modify the bass—treble relationships by prangjdboost” or “cut” to components outside
this range. It is usually formed from a cascade of first-oatet second-order filters with adjustable fre-
quency responses. Many of the low-order digital filters expgdl for implementing these functions have
been obtained by applying the bilinear transformation tal@gpfilters. We first review the analog filters
and then develop their digital equivalents. In addition describe some new structures with more flexible
frequency responses.

Analog Filters

Simple lowpass and highpass analog filters with a Buttetwmidgnitude response are usually employed
in analog mixers. The transfer functions of first-order agdbwpass and highpass Butterworth filters
were given in Eq. (9.22) and (9.27) of Text, respectively.e Transfer functions of higher-order low-
pass and highpass analog Butterworth filters can be derisiad the method outlined in Section A.2 of
Appendix A in Text. Also used in analog mixers are secondepethalog bandpass and bandstop filters
whose transfer functions were given in Eq. (9.29) and E@4(%f Text, respectively.

A first-order lowpass analog shelving filter for boost hasaasfer function given &y

s+ KS$2.

. K>1 50
o > (50)

Hip (s) =
It follows from Eq. 60) that
HB0) =k, HPB(c0)=1. (51)

The transfer functiorHL(ﬁ)(s) of Eg. 60) can also be used for cut K < 1. However, in this case,

HL(f))(s) has a magnitude response that is not symmetrical to thahécase ofK > 1 (boost) with
respect to the frequency axis without changing the cutefjiiency?® The first-order lowpass analog

25p. A. Regalia and S.K. Mitra, Tunable digital frequency s equalization filter$EEE Trans. Acoustics, Speech, and Signal
Processingvol. ASSP-35, pp. 118-120, January 1987
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shelving filter providing cut that retains the cutoff freqeg has a transfer function given®y

+ £
HO (5) = 2T K <1, 52
)= ra K - 2)
for which c c
HS0) =K, HS(00)=1. (53)

The first-order highpass analog shelving filfé}ﬁ} (s) for the boost and cut can be derived by applying
a lowpass-to-highpass transformation to the transfertioms of Eqgs. $0) and 62), respectively. The
transfer function for boost is given by

Ks + £2,

(B)
Hyp(s) = o K > 1, (54)
for which » R
HP O =1,  HP (o) =K. (55)
Likewise, the transfer function for cut is given by
(©) s+ 2.
H =K|—— K <1 56
wp () (s—i—K.QC)’ =h (56)
for which c c
HY 0 =1,  H\J(c0) =K. (57)

The peak filteris used for boost or cut at a finite frequen®y. The transfer function of an analog
second-order peak filter is given by

s>+ KBs + 22

, 58
s2 + Bs + £22 (58)

Hyp(s) =
for which the maximum (minimum) value of the magnitude res® determined b, occurs at the
center frequency?,. The above peak filter operates as a bandpass filtéf for1 and as a bandstop filter
for K < 1. The 3-dB bandwidth of the passband for a bandpass respodsbe3-dB bandwidth of the
stopband for a bandstop response is giveBby 2,/ 0,.

First-Order Digital Filters and Equalizers

The analog filters can be converted into their digital edeives by applying the Type 1 bilinear trans-
formation of Eq. (9.14) of Text to their corresponding trf@ngunctions. The design of first-order But-
terworth digital lowpass and highpass filters derived viméar transformation of corresponding analog
transfer functions has been treated in Section 9.2.2 of. TEx¢ relevant transfer functions are given in
Egs. (9.24) and (9.28), respectively, of Text.

The transfer functions of the first-order digital lowpassl &ilghpass filters given by Egs. (9.24) and
(9.28) can be alternatively expressed as

GrLp(z) = {1 — Ai1(2)}, (59a)
Gpp(2) = {1+ A1 (2)}, (59b)

26U. Zélzer, Digital Audio Signal Processing/Viley, New York NY, 1997.



30 1: Applications of Digital Signal Processing

o3 Highpass
output
l T
2
Input—> A4)
-1
o Lowpass
U output

Figure 20: A parametrically tunable first-order lowpass/highpaseffilt

whereA, (z) is a first-order allpass transfer function given by

a—z1

Ai(z) = (60)

l —az"l
A composite realization of the above two transfer functisreketched in Figur20, where the first-order
allpass digital transfer functiod; (z) can be realized using any one of the single multiplier stnest
of Figure 8.24 of Text. Note that in this structure, the 3-dBodf frequencyw, of both digital filters is
independently controlled by the multiplier constanaf the allpass section.

To derive the transfer functioﬁgf,) (z) of a first-order digital low-frequency shelving filter for bst,
we first observe that Eq54) can be rewritten as a sum of a first-order analog lowpass dinst-®rder
analog highpass transfer functfén

2.
H®(5) = K (S - 9) n (S +Sszc)' (61)

Applying the bilinear transformation to the transfer fuootof Eq. ©1) and making use of Eqs599 and
(59b), we arrive at

GB ) = K11 - Ag(@)] + L1+ Ap(2)], (62)

where, to emphasize the fact that the above shelving filtéoridoost, we have replaced;(z) with

Ap(z), with the latter rewritten as

oap — z71

— O0BZ
From Eg. (9.32) of Text the tuning parametgy is given by
g = 1 —tanw.T/2) (64)

1+ tan(w.T/2)
Likewise, the transfer function of a first-order digital ldrequency shelving filter for cut is obtained

by applying the bilinear transformation ESL(‘I’;) (s) of Eq. (66).2* To this end, we first rewriteHL(‘I’;) (s) as
a sum of a lowpass and a highpass transfer functions as tadibalow:

(C) _ .Qc S
HLp () = (s T szc/K) * (s n :zc/K) ’ (63)

which, after a bilinear transformation, leads to the tran&ifinction of a first-order low-frequency digital
shelving filter for cut as given by

GG = £l = Ac()] + 1 + Ac(9)], (66)
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Figure 21: Low-frequency shelving filter wherd (z) = Apg(z) for boost andA4(z) = A¢ (z) for cut.
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Figure 22: Gain responses of the low-frequency digital shelving fi{ggrfor six values oK with v, = 0.257 and
T = 1 and (b) for three values @f, with T = 1 andK = 10 for boost andk = 0.1 for cut.

where .
Ac) = T5——. (67)
—cZ
with
ve K —tan(w.T/2) (68)

T K +tanw.T/2)

It should be noted thaﬂ;ﬁ) (z) of Eq. (66) is identical in form toGg?,) (z) of Eq. (62). Hence, the digital
filter structure shown in Figur2l can be used for both boost and cut, except for bgst) = Ap(2)
and for cut4; (z) = Ac(2).

Figures22(a) and (b) show the gain responses of the first-order lowgligéal shelving filter obtained
by varying the multiplier constark’ andw,.. Note that the parametéf controls the amount of boost or
cut at low frequencies, while the parametegsandac control the boost bandwidth and cut bandwidth,
respectively.

To derive the transfer functioﬁﬁfg (z) of a first-order high-frequency shelving filter for boost, we
first express Eq.54) as a sum of a first-order analog lowpass and highpass trausfetion and then
apply the bilinear transformation to the resulting expi@ssarriving at

Gip(2) = 1 — Ap(@)] + K [1 + Ap(2)]. (69)

whereAg(2) is as given by Eq.§3), with the multiplier constantp given by Eq. 64).
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Figure24: Gain responses of the high-frequency shelving filter of Fe@3 (a) for three values of the parametér
with w. = 0.57 andT = 1, and (b) for three values of the parametgr with K = 10 and7 = 1.

Likewise, the transfer functioG}fg (z) of a first-order high-frequency shelving filter for cut is ob-
tained by expressing Egh) as a sum of a first-order analog lowpass and highpass trdosfetion and
then applying the bilinear transformation resulting in

Gip(@) = 31— Ac)] + 51 + Ac(2)], (70)
whereAc (z) is as given by Eq.66), with the multiplier constant¢ given by
1= Ktanw.T/2)
1+ Ktanw:T/2)’

ac (71)

As G}fg (z) of Eg. 69 and Gﬁfg (z) of Eqg. (70) are identical in form, the digital filter structure
of Figure23 can be employed for both boost and cut, except for bobgt) = Ap(z) and for cut
Ai(z) = Ac(2).

Figures24(a) and (b) show the gain responses of the first-order higheiency shelving filter obtained
by varying the multiplier constarit andw,. Note that, as in the case of the low-frequency shelving filte
here the parametet controls the amount of boost or cut at high frequencies,emiié parametersg
andac control the boost bandwidth and cut bandwidth, respegtivel

Second-Order Digital Filters and Equalizers

The design of second-order digital bandpass and bandsters fderived via bilinear transformation of
corresponding analog transfer functions has been treat8édtion 9.2.3 of Text. The relevant transfer
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Figure 25: A parametrically tunable second-order digital bandpassibtop filter: (a) overall structure and (b)

allpass section realizind,(z).

functions, given in Egs. (9.40) and (9.44) of Text, can berakitively expressed as

Gpp(z) =
Gps(z) =

[1—Ax(2)], (72a)

1
2
L+ A (2)], (72b)
whereA, (z) is a second-order allpass transfer function given by

a—Bl+a)z7! +272
1-B(l+a)z7! +az72’

Az(z) = (73)
A composite realization of both filters is indicated in Fig@&(a), where the second-order allpass section
is realized using the cascaded lattice structure of Fig&fie) for independent tuning of the center (notch)
frequencyw, and the 3-dB bandwidti®,, .

The transfer functionﬂfﬁ) (z) of a second-order peak filter for boost can be derived by apphye
simplified lowpass-to-bandpass spectral transformati@uo(9.47) of Text to the lowpass shelving filter
of Eq. (62, resulting irt®

6P =68 () |271%_271(ﬂ) = L[ - Asp(2)] + 311 + A2p(2)], (74)
1+8z—1
where
B = codw,), (75)

determines the center angular frequeagywhere the bandpass response peaks, and

agp —B(l +ap)z™! + 272
1—B(0+ap)z7! +apz=2

Axp(2) = (76)
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Figure 26: A parametrically tunable second-order peak filter for ba@wst cut.

is a second-order allpass transfer function obtained byyagpthe lowpass-to-bandpass transformation
of Eq. (9.47) of Text to the first-order allpass transfer fioc.A(p)(z) of Eq. 63). Here, the parameter
ap is now related to the 3-dB bandwidth, of the bandpass response through

_ 1—tan(B,T/2)

B I ftan(BuT/2)

(77)

Likewise, the transfer functioGI(S,) (z) of a second-order peak filter for cut is obtained by applying
the lowpass-to-bandpass transformation to the lowpasgisgédilter for cut of Eq. 66), resulting in

G0 = 696 = K[l - Aoc )] + 21 + A ()] (78)

-zt ( 12-;;;[51 )

In Eq. (78), the center angular frequeney, where the bandstop response dips, is related to the paramete
B through Eg. 75) and

ac — Bl +ac)z7 ! + 272
1-B(0+ac)z7 ! +acz2
is a second-order allpass transfer function obtained byyagpthe lowpass-to-bandpass transformation

of Eq. (9.56) to the first-order allpass transfer functidy)(z) of Eq. (66). Here, the parameterc is
now related to the 3-dB bandwidi®y,, of the bandstop response through

Axc(z) =

(79)

_ K —tan(B,T/2)
K +tan(B,T/2)

ac (80)

Since botrGg;) (z) and Gécp) (z) are identical in form, the digital filter structure of Figu2é can be
employed for both boost and cut, except for badstz) = A,p(z) and for cutd;(z) = Axc (2).

It follows from the above discussion that the peak or the difhe gain response occurs at the fre-
guencyw,, which is controlled independently by the parametemccording to Eq.{5), and the 3-dB
bandwidthB,, of the gain response is determined solely by the paramgtef Eq. (77) for boost or by
the parameterc of of Eq. B0) for cut. Moreover, the height of the peak of the magnitudpomse for
boost is given byK = Gg?,)(ef“’f’) and the height of the dip of the magnitude response for cuveng
by K = Gl(ch) (e/@¢). Figures27(a), (b), and (c) show the gain responses of the second-peddcfilter
obtained by varying the parametes w,, and By, .
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Figure 27: Gain responses of the second-order peak filter (a) for vanalues of the center frequeney, with

By = 0.1z, T = 1,andK = 10 for boost andK = 0.1 for cut; (b) for various values of the paramef€rwith

wo = 0.457, By, = 0.1, andT = 1; and (c) for various values of the paramebgy, with wg = 0.457, T = 1 and
K = 10 for boost andk = 0.1 for cut.

Higher-Order Equalizers

A graphic equalizer with tunable gain response can be bsiittga cascade of first-order and second-order
equalizers with external control of the maximum gain valoiesach section in the cascade. FigRsa)
shows the block diagram of a cascade of one first-order aee twcond-order equalizers with nominal
frequency response parameters as indicated. FRfi{b} shows its gain response for some typical values
of the parametek (maximum gain values) of the individual sections.

6 Digital Music Synthesis

As mentioned in Section 1.4.4 of Text that there are bagialir methods of musical sound synthesis: (1)
wavetable synthesi§2) spectral modeling synthesi€) nonlinear synthesjsand (4)physical modeling
synthesig’ 28

27R. Rabenstein and L. Trautmann, Digital sound synthesishlygipal modeling, IrProc. 2nd International Symp. on Image
and Signal Processing and Analysiges 12-23, Pula, Croatia, June 2001.

283.0. Smith 1ll, Viewpoints on the history of digital syntligsin Proc. International Computer Music Conferengages 1-10,
Montreal, Que., Canada, October 1991.
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Figure 28: (a) Block diagram of a typical graphic equalizer and (b) angesponse for the section parameter
values shown.

A detailed discussion of all these methods is beyond thessobthis book. In this section, we outline
a simple wavetable synthesis-based method for generhingpiunds of plucked-string instrume#ts.

The basic idea behind the wavetable synthesis method isrt® @ihe period of a desired musical tone
and repeat it over and over to generate a periodic signalh 8signal can be generated by running the
IIR digital filter structure of Figurd.3(a) with specified initial conditions, calledavetablestored in the
delay register —® and with no input. Mathematically, the generated periodiertan be expressed as

yln] = yln — R], (81)

whereR, called thewavetable lengthis the period. The frequency of the tonefig/ R, whereFr is the
sampling frequency. Usually, samples of simple waveforrasiaed as initial conditions.
A simple modification of the algorithm has been used to geagiacked-string tones. The modified
algorithm is given by
aR
ylnl = % (y[n — Rl + y[n — R—1]). (82)

The correspondinglucked-string filterstructure is shown in Figurd(a). It should be noted that this
structure has been derived from the IIR filter structure guFé13(a) by inserting a lowpass filte¥ (z)
consisting of a 2-point moving average filter in cascade witfain blockx® in the feedback path.

The initial sound of a plucked guitar string contains marghkirequency components. To simulate
this effect, the plucked-string filter structure is run wibro input and with zero-mean random numbers
initially stored in the delay block~®. The high-frequency components of the stored data get tegiga
lowpass filtered by7 (z) as they circulate around the feedback loop of the filter stinecof Figure29(a)
and decay faster than the low-frequency components. Siec2-point moving average filter has a group
delay of% samples, the pitch period of the tonelst+ % samples.

It is instructive to examine the gain response of the pluekteiag filter3® The transfer function of the

29K. Karplus and A. Strong, Digital synthesis of plucked+sgriand drum timbresGomputer Music Journalvol. 7, pp. 43-55,
Summer 1983.

30K. Steiglitz, A Digital Signal Processing PrimeAddison Wesley, Menlo Park CA, 1996.
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Figure 29: (a) Basic plucked-string filter structure and (b) its gaispe@nse forR = 20 andae = 0.99.

Figure 30: Modified plucked-string filter structure.

the filter structure of Fig29(a) is given by

1
— el 427z R

H(z) = (83)

As the loop delay is 20.5 samples, the resonance frequesr@espected to occur at integer multiples of
the pitch frequency'r /20.5, whereFr is the sampling frequency. It can be seen from the gain resspon
plot shown in Figur9(b) for R = 20 anda = 0.99, the resonance peaks occur at frequencies very close
to the expected values. In addition, the amplitudes of tfekpeecrease with increasing frequencies as
desired. Moreover, the widths of the resonance peaks isewih increasing frequency, as expected.

For better control of the pitch frequency, an allpass fillgr) is inserted in the feedback loop, as
indicated in Figure303! The fractional group delay of the allpass filter can be adfiigb tune the
overall loop delay of the modified structure. A detailed dssion on the design of the modified plucked-
string filter structure for the generation of a sound with\aegifundamental frequency can be found in
Steiglitz30

7 Discrete-Time Analytic Signal Generation

As discussed in SectioP?, an analytic continuous-time signal has a zero-valuedtgpador all nega-
tive frequencies. Such a signal finds applications in sksgleband analog communication systems and
analog frequency-division multiplex systems. A discritee signal with a similar property finds applica-
tions in digital communication systems and is the subjethisfsection. We illustrate here the generation
of an analytic signaj[n] from a discrete-time real signa[n] and describe some of its applications.

31D.A. Jaffe and J.0. Smith, Extensions of the Karplus-Strphugked-string algorithmComputer Music Journalvol. 9, pp.
26-23, 1983.
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Figure 31: (a) Frequency response of the discrete-time filter gemeyatin analytic signal and (b) half-band lowpass
filter.

Now, the Fourier transfornX (e/?) of a real signak[n], if it exists, is nonzero for both positive and
negative frequencies. On the other hand, a sigirdl with a single-sided spectruii(e/®) that is zero
for negative frequencies must be a complex signal. Congfidezomplex analytic signal

y[nl = x[n] + jX[n], (84)
wherex[n] andx[n] are real. Its Fourier transfori¥i(e’/) is given by
Y(e) = X () + j X ('), (85)

Where)?(ef“’) is the Fourier transform of[r]. Now, x[n] andX[n] being real, their corresponding Fourier
transforms are conjugate symmetric; thatige/) = X *(e=/¢) andX (e/®) = X*(e~/®). Hence, from
Eq. 85), we obtain

X(e/?) = L[Y(e/®) + Y*(e /)], (86a)
JX (@)= L[y (e/®) —v*(@e 7). (86b)
Since, by assumptiof¥;(e/®) = 0 for —7 < w < 0, we obtain from Eq.§69
Y(e/®) = {ZX(ej‘”), 0<w<m, 87)
0, -7 <w<0.

Thus, the analytic signal[z] can be generated by passinjg] through a linear discrete-time system, with
a frequency respondgé(e/®) given by

2, 0<w<m,

0, — 7w <w<0, (88)

H(e/?) = {

as indicated in Figurgl(a).

7.1 The Discrete-Time Hilbert Transformer

We now relate the imaginary patin] of the analytic signal[#] to its real partx[n]. From Eq. 86b), we
get . _ .
X () = 55 [Y(e/) = Y* (/)] (89)

For0 < w < m, Y(e™/?) = 0, and for—7 < w < 0, Y(e/®) = 0. Using this property and Eg87) in
Eq. 89), it can be easily shown that

—jX(ej“’), 0<w<m,

X(e/?) = .
™) jX(E'®), —nm<w<0.

(90)
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Figure 32: Generation of an analytic signal using a Hilbert transfarme

Thus, the imaginary patt[n] of the analytic signalk[r] can be generated by passing its real pduf
through a linear discrete-time system, with a frequencyoeseHt(e/?) given by

Jjoy _ —j, Of(l)<7‘[,
Hyr(e’?) = i, —m<w<0.

(91)

The linear system defined by EQ1j is usually referred to as the ideidilbert transformer Its output
X[n] is called theHilbert transformof its inputx[r]. The basic scheme for the generation of an analytic
signaly[n] = yre[n] + jyim[n] from a real signak(n] is thus as indicated in Figui@2. Observe that
|HHT(ef“’)\ = 1 for all frequencies and has-a90-degree phase-shift far < o < 7 and a+ 90-
degree phase-shift forr < w < 0. As a result, an ideal Hilbert transformer is also callet)alegree
phase-shifter

The impulse responggyr[n] of the ideal Hilbert transformer is obtained by taking theeirse Fourier
transform ofHyr(e/®) and can be shown to be

0, for n even,

hutln] = 5 for n odd.

n’

(92)

Since the ideal Hilbert transformer has a two-sided infifétegth impulse response defined ferr <
n < m, itis an unrealizable system. Moreover, its transfer fiomct 1 (z) exists only on the unit circle.
We describe later two approaches for developing a reabzabroximation.

7.2 Relation with Half-Band Filters

Consider the filter with a frequency respor@e’/) obtained by shifting the frequency resporsge’)
of Eq. 88) by /2 radians and scaling by a factér(see Figures1):

I, 0<lo|l <Z,

0, 7 <|o|<m.

G(e’®) = LH(e/@T/2)) = (93)
From our discussion in Section 13.6.2 of Text, we observe ¢h@a’®) is a half-band lowpass filter.
Because of the relation betweéh(e/?) of Eq. 88) and the real coefficient half-band lowpass filter
G(e/?) of Eq. 93), the filter H(e/?) has been referred to asamplex half-band filte??

7.3 Design of the Hilbert Transformer

It also follows from the above relation that a complex hafid filter can be designed simply by shifting
the frequency response of a half-band lowpass filter 3/ radians and then scaling by a factor 2. Equiv-
alently, the relation between the transfer functions ofragiex half-band filtei// (z) and a real half-band

32p A. Regalia, Special filter designs, In S.K. Mitra and J.&isér, editorsHandbook for Digital Signal Processinghapter 13,
pages 967-980. Wiley-Interscience, New York, NY, 1993.
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Figure 33: FIR realization of a complex half-band filter.

lowpass filterG (z) is given by
H(z) = j2G(—jz2). (94)

Three methods of the design of the real half-band filter haenlpresented in Section 13.6 of Text. We
adopt two of these methods here for the design of complexidaaitl filters.

FIR Complex Half-Band Filter

Let G(z) be the desired FIR real half-band linear-phase lowpassdilteven degre#/, with the passband
edge atw,, stopband edge al;, and passband and stopband ripple§,ofwith w, + ws; = 7. The half-
band filterG(z) is then designed by first designing a wide-band linear-pfiise F(z) of degreeN/2
with a passband from 0 tw,,, a transition band frordw,, to =, and a passband ripple 24. The desired
half-band filterG(z) is then obtained by forming

G(z) =L [z7V2 + F(z?)]. (95)
Substituting Eq.95) in Eq. (94), we obtain
HE) = j |22 + F(=23)| = 772 4 jF(=22). (96)

An FIR implementation of the complex half-band filter basedite above decomposition is indicated in
Figure33. The linear-phase FIR filteF (—z2) is thus an approximation to a Hilbert transformer.
We illustrate the above approach in Exam@le

EXAMPLE 8 FIR Complex Half-Band Filter Design

Using MATLAB, we design a wide-band FIR filtét(z) of degreel3 with a passband frofdt00.85 =
and an extremely small stopband frah® = to #. We use the functiomemez with a magnitude
vectorm = [1 1 0 0] . The weight vector used to weigh the passband and the stdpban =
[2 0.05] . The magnitude responses of the wide-band fifter) and the Hilbert transformef (—z2)
are shown in Figure34(a) and (b).

The FIR Hilbert transformer can be designed directly ushegftinctionremez . Example9illustrates
this approach.

EXAMPLE9 Direct Design of FIR Complex Half-Band Filter Using MATLAB

We design a 26th-order FIR Hilbert transformer with a pasdbfom 0.1z to 0.97. It should be
noted that for the design of a Hilbert transformer, the firstjfiency point in the vectdr containing

the specified bandedges cannot b& arhe magnitude response of the designed Hilbert transforme
obtained using the program statembntremez(26, [0.1 0.9], [1 1], 'Hilbert) is
indicated in Figure35.
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Figure 34: Magnitude responses of (a) the wide-band FIR fif¢r) and (b) the approximate Hilbert transformer
F(=z2).
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Figure 35: The magnitude response of the Hilbert transformer desigivedtly using MATLAB .

It should be noted that due to numerical round-off problenmdike the design of Exampl@, the odd
impulse response coefficients of the Hilbert transformee lage not exactly zero.

IIR Complex Half-Band Filter

We outlined in Section 13.6.5 of Text a method to design stdll real coefficient half-band filters of
odd order in the forf?

G(z) = 3[Ao(z?) + 27 AL(Z?)), (97)
whereAy(z) and.A,(z) are stable allpass transfer functions. Substituting &9.i0 Eq. (94), we there-
fore arrive at

H(z) = Ao(=2%) + jz L A1(=2?). (98)
A realization of the complex half-band filter based on thevabdecomposition is thus as shown in Fig-
ure36.
We illustrate the above approach to Hilbert transformeigieist ExamplelO.

33p.p. Vaidyanathan, P.A. Regalia, and S.K. Mitra, Designaftdly-complementary 1IR digital filters using a single cdexp
allpass filter, with multirate applicationfEEEE Trans. on Circuits and Systenvel. CAS-34, pp. 378-389, April 1987.
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Figure 36: IR realization of a complex half-band filter.
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Figure 37: (a) Gain response of the complex half-band filter (normdlize0 dB maximum gain) and (b) phase
difference between the two allpass sections of the comméhxdiand filter.

EXAMPLE 10 IIR Complex Half-Band Filter Design

In Example 13.24, we designed a real half-band ellipticrfittéh the following frequency response
specifications:wy; = 0.67 andds = 0.016. The transfer function of the real half-band filt6x(z)
can be expressed as in E§7), where the transfer functions of the two allpass sectidp$z2) and

A1 (z?) are given in Eq. (13.116). The gain response of the compléxohad filter H(z) obtained
using Eq. 98) is sketched in Figur87(a). Figure37(b) shows the phase difference between the two
allpass functions4o(—z2) andz~!.A;(—z2) of the complex half-band filter. Note that, as expected,
the phase difference ) degrees for most of the positive frequency range Zttddegrees for most of
the negative frequency range. In plotting the gain respohtiee complex half-band filter and the phase
difference between its constituent two allpass sectidres M-file freqz(num,den,n,’'whole’)

has been used to compute the pertinent frequency respdngs waer the whole normalized frequency
range from0 to 2.

7.4 Single-Sideband Modulation

For efficient transmission over long distances, a real l@gdiency band-limited signal[z], such as
speech or music, is modulated by a very high frequency sidabkcarrier signal cos.n, with the carrier
frequencyw, being less than half of the sampling frequency. The spectr”) of the resulting signal
v[n] = x[n] cosw.n is given by

V(er®) = 3 [ X(e/ @) + x(e/ree)) . (99)

As indicated in Figur@8, if X(e/?) is band-limited tavy,, the spectrun¥ (e/*) of the modulated signal
v[n] has a bandwidth ofwys centered attw.. By choosing widely separated carrier frequencies, one
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Figure 38: Spectra of a real signal and its modulated version. (Saleklirepresent the real parts, and dashed lines
represent the imaginary parts.)

can modulate a number of low-frequency signals to hightfeagy signals, combine them by frequency-

division multiplexing, and transmit over a common chanriéie carrier frequencies are chosen appro-
priately to ensure that there is no overlap in the spectrdn@fmodulated signals when combined by

frequency-division multiplexing. At the receiving endcbaf the modulated signals is then separated by
a bank of bandpass filters of center frequencies correspgmalithe different carrier frequencies.

It is evident from Figure88that, for a real low-frequency signaln], the spectrum of its modulated
versionv(n] is symmetric with respect to the carrier frequengy Thus, the portion of the spectrum in
the frequency range from, to (w. + wyr), called theupper sidebanghas the same information content
as the portion in the frequency range frgamy — wyr) to w., called thelower sideband Hence, for a
more efficient utilization of the channel bandwidth, it iffatient to transmit either the upper or the lower
sideband signal. A conceptually simple way of eliminatimg @f the sidebands is to pass the modulated
signalv[n] through a sideband filter whose passband covers the freguamge of one of the sidebands.

An alternative, often preferred, approach for single-saiel signal generation is by modulating the
analytic signal whose real and imaginary parts are, resedgtthe real signal and its Hilbert transform.
To illustrate this approach, letn] = x[n] + j X[n], wherex[n] is the Hilbert transform of[n]. Consider

sln] = y[nle’®" = (yreln] + jyim[n]) (COSwen + j sinwcn)
= (x[n] cosw.n — X[n] Sinw.n)
+ j (x[n]sinwen + %[n] coswen) . (100)

From Eq. (00, the real and imaginary parts df:] are thus given by

sre[n] = x[n] coswen — x[n] sinw,n, (101a)
Sim[n] = x[n] sinwen + x[n] coswen. (101b)

Figure 39 shows the spectra of[n], x[n], y[n], s[n], sre[n], andsim[n]. It therefore follows from these
plots that a single-sideband signal can be generated uitihey ene of the modulation schemes described
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by Egs. (013 and (01D, respectively. A block diagram representation of the sohef Eq. (013 is
sketched in FigurdO.

8 Signal Compression

As mentioned earlier, signals carry information, and thigative of signal processing is to preserve the
information contained in the signal and extract and maiitguit when necessary. Most digital signals
encountered in practice contain a huge amount of data. Eongbe, a gray-level image of sizé¢2 x 512
with 8-bits per pixel containg512)? - 8 = 2,097, 152 bits. A color image of the same size contains 3
times as many bits. For efficient storage of digital signials,often necessary to compress the data into a
smaller size requiring significantly fewer number of bitssi§nal in compressed form also requires less
bandwidth for transmission. Roughly speaking, signal casgion is concerned with the reduction of the
amount of data, while preserving the information conterthefsignal with some acceptable fidelity.

Most practical signals exhibitata redundancyas they contain some amount of data with no relevant
information. Three types of data redundancy are usuallpemered in practicecoding redundancy
intersample redundangyand psychovisual redundanc Signal compression methods exploit one or
more of these redundancies to achieve data reduction.

A signal coding system consists of an encoder and a decoldeinput to the encoder is the signab
be compressed, and its output is the compressed bit stte@re decoder performs the reverse operation.
Its input is the compressed bit streandeveloped by the encoder, and its outpig a reasonable replica
of the original input signal of the encoder. The basic congmis of the encoder and the decoder are
shown in Figuretl.

Theenergy compressidoiock transforms the input sequenceto another sequengewith the same
total energy, while packing most of the energy in very fewarhplesy. Thequantizerblock develops an
approximate representationyfor a given level of accuracy in the form of an integer-valsedquence
by adjusting the quantizer step size to control the tradéeativeen distortion and bit rate. Tlemtropy
codingblock uses variable-length entropy coding to encode thegars in the sequencginto a binary
bitstreand, with the aim of minimizing the total number of bits éhby making use of the statistics of the
class of samples iq.

The entropy decodinglock regenerates the integer-valued sequenitem the binary bit strear.
Theinverse quantizedevelopsy, a best estimate gf from q. Finally, thereconstructiorblock develops
X, the best approximation of the original input sequexné®m y.

The signal compression methods can be classified into twie gasups:losslessandlossy. In the
lossless compression methods, no information is lost deertgpression, and the original signal can be
recovered exactly from the compressed data by the decodehdther hand, in the lossy compression
methods, some amount of information (usually less reléviarbst, due to compression and the signal
reconstructed by the decoder is not a perfect replica of tlggnal signal but is still an acceptable ap-
proximation for the application at hand. Naturally, thedaimethod can result in a significant reduction
in the number of bits necessary to represent the signal asahsdered here. Moreover, for conciseness,
we discuss image compression methods that exploit onlyatimg redundancy. A detailed exposition of
compression methods exploiting all types of data redunidaris beyond the scope of this book.

34R.C. Gonzalez and P. WintBjgital Image ProcessingSecond Edition, Prentice-Hall, Upper Saddle River NJ 2200
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Figure41: The block diagram representation of the signal compressietem.

8.1 Coding Redundancy

We assume that each sample of the discrete-time sigal} is a random variable; taking one ofQ
distinct values with a probability;,0 <i < Q — 1, wherep; < 1 andZin_O1 pi = 1. Each possible
valuer; is usually called ssymbol. The probability p; of each symbol; can be estimated from the
histogram of the signal. Thus, if the signal contains a tofaN samples, withm; denoting the total

number of samples taking the valye then
0<i<Q-1. (102)

Let b; denote the length of theth codeword, that is, the total number of bits necessargpoasent
the value of the random variablg. A measure of the coding redundancy is then given by the geera
number of bits needed to represent each sample of the igind}:

0-1
Bay= ) _ bip; bits. (103)

=0

As aresult, the total number of bits required to represemsinal isN - Bay.

8.2 Entropy

The goal of the compression method is to reduce the volumetaf while retaining the information
content of the original signal with some acceptable fidelithe information content represented by a
symbol can be informally related to its unexpectednessjshd a symbol that arrives is the one that was
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expected, it does not convey very much information. On themtand, if an unexpected symbol arrives,
it conveys much more information. Thus, the informationtem of a particular symbol can be related to
its probability of occurrence, as described next.

For a discrete-time sequen¢e[n]} with samples taking one aP distinct symbols; with a prob-
ability p;,0 < i < Q — 1, a measure of the information contehtof the i-th symbolr; is defined
by

I = — |ng Di- (104)

It follows from the above definition that > 0. Moreover, it also can be seen thatis very large when
pi is very small.

A measure of the average information content of the si¢iapd]} is then given by itentropy,which
is defined by

0-1 0-1
MHe=Y_ pili=—Y_ pilog, p: bits/symbol (105)
i=0 i=0

The coding redundancy is defined as the difference betweeactiual data rate and the entropy of a data
stream.

8.3 A Signal Compression Example 36

We now consider the compression of a gray level image tdilitssthe various concepts introduced earlier
in this section. For the energy compression stage, we makefube Haar wavelets of Section 14.6.2.
Since the image is a two-dimensional sequence, the wavedeingposition is first applied row-wise and
then column-wise. Applying the Haar transfokto the input image, first row-wise and then column-
wise, we get

y = HxHT, (106)
where
_ |1
H_ﬁ[l _1] (107)
To understand the effect of the decomposition on the imamgsider & x 2 two-dimensional sequence
given by
a b
x—[c d] (108)
Then,

1[a+b+c+d a—b+c—di|' (109)

“2lag+b—c—d a—-b—c+d

The element + b + ¢ + d at the top left position oy is the 4-point average ofand therefore contains
only the vertical and horizontal low-frequency componeafts. It is labeled as thé L part ofx. The
elemenu —b 4 ¢ — d at the top right position of is obtained by forming the differences of the horizontal
components and the sum of the vertical components and hentaics the vertical low- and horizontal
high-frequency components. It is labeled aslthe part ofx. The elemen& + b — ¢ — d at the bottom
left position ofy is obtained by forming the sum of the horizontal componentbsthe differences of the

35A.K. Jain, Fundamentals of Digital Image Processjigyentice Hall, Englewood Cliffs NJ, 1989.

38portions of this section have been adapted from N. Kingstiomgge Coding Course NoteBepartment of Engineering, Uni-
versity of Cambridge, Cambridge, U.K., July 13, 2001, bynpission of the author.
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vertical components and hence contains the horizontal &ma-vertical high-frequency components. It
is labeled as thé H part ofx. Finally, the element — b — ¢ + d at the bottom right is obtained by
forming the differences between both the horizontal anticarcomponents and therefore contains only
the vertical and horizontal high-frequency components. df is labeled as thél H part ofx.

Applying a one-level Haar wavelet decomposition to the imma@oldhill” of Figure 42(a), down-
sampling the outputs of all filters by a factor-of-2 in bothriaontal and vertical directions, we arrive at
the four subimages shown in Figwt&(b). The original image is of siz&12 x 512 pixels. The subimages
of Figure42(b) are of siz&56 x256 pixels each. The total energies of the subimages and theieptages
of the total energy of all subimages are now as follows:

LL: HL: LH: HH:
3919.91 x 10°  6.776 x 10°  7.367 x 10°  1.483 x 10°
99.603 % 0.172% 0.187% 0.038 %

The sum of the energies of all subimages is equalots.54 x 10°, which is also the total energy
of the original image of Figurd2(a). As can be seen from the above energy distribution datd-ay:
ure42(b), theL L subimage contains most of the energy of the original imagereas, thélH subimage
contains least of the energy. Also, thié. subimage has mostly the near-horizontal edges, whereas the
LH subimage has mostly the near-vertical edges.

To evaluate the entropies, we use uniform scalar quanfizeadl signals with a quantization step size
Q = 15. The entropy of the original image computed from its histwgy after compression with Q = 15,
is H, = 3.583 bits/pixel. The entropies of the sub-images after a onelle\aar decomposition are as
given below:

LL: HL: LH: HH:
4.549/4 1.565/4 1.375/4 0.574/4
=1.1370 =0.3911 0.3438 0.1436

The entropy of the wavelet representatiorfis = 2.016 bits/pixel, obtained by adding the entropies
of the subimages given above. Hence, the compression satid8-to-1.0. Figure43(a) and (b) show,
respectively, the reconstructed “Goldhill” image afteredt quantization of the original pixels and after
quantization of the wavelet coefficients.

A commonly used measure of the quality of the reconstructedje compared with the original image
is thepeak-signal-to-noise ratiPSNR). Letx[m, n] denote them, n)th pixel of an original image of
sizeM x N, and,y[m,n] denote thgm, n)th pixel of the reconstructed imageof the same size, with
8-bits per pixel. Then, the PSNR is defined by

255

where RMSE is theoot mean square errorvhich is the square root of theean square erro(MSE),
given by

YN (2[m,n] — y?[m,n))
MN ’

The PSNR of the reconstructed image of Figdi8&) is 35.42 dB and that of Figu#3(b) is 35.72 dB.
We next apply a two-level Haar wavelet decomposition to ‘@Bdl” image. The process is equivalent
to applying a one-level decomposition to the-subimage of Figurd3(b). Figure44(a) shows the seven

MSE = (111)
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Figure 43: Reconstructed “Goldhill” image: (a) after direct quantiaa of the original pixels and (b) after
quantization of the wavelet coefficients.

subimages. The subimage at the top left is of $iz& x 128 and contains only the low frequencies and
is labeledLLL. The remaining 3 subimages obtained after the second-diessimposition are labeled
accordingly.

The total energies of the four subimages of di2& x 128 at the top left corner and their percentages
of the total energy of all subimages are now as follows:

LLL: LHL: LLH: LHH:
3898.26 x 10  9.412x 10° 10.301 x 10°  1.940 x 10°
99.053 % 0.239% 0.262 % 0.049 %

The total energies of the remaining three subimages of2igex 256 at the top right and bottom left
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Figure 44: (a) Subimages after a two-level Haar wavelet decompositi@h(b) reconstructed image after
guantization of the two-level wavelet coefficients.

and right corners remain the same as given earlier. The suimeaénergies of all subimages is again
equal t03935.54 x 10°. The entropy of the wavelet representation after a twotéeeomposition is now
‘H, = 1.620 bits/pixel, obtained by adding the entropies of the subiesagjven above and is seen to
be much smaller than that obtained after a one-level decsitipo. The compression ratio is 2.2-to-1.0.
Figure 44(b) shows the reconstructed “Goldhill” image after quaatian of the wavelet coefficients at
the second level. The PSNR of the reconstructed image is Borb3iB.

The compression ratio advantage of the wavelet decomposgia consequence of the entropy dif-
ference between the quantization of the image in the spamaidcand the separate quantization of each
subimage. The wavelet decomposition allows for an entreguction since most of the signal energy is
allocated to low-frequency subimages with a smaller nurobeixels. If the quantization step does not
force the entropy reduction to be very large, then the wavelsonstructed image can still have better
quality than that obtained from space-domain coding, wigizh seen from the compression examples
given in Figure#t3and44.

In order to exploit the entropy of the image representatfter guantization, a lossless source coding
scheme such as Huffman or arithmetic coding is requifethe design of these codes goes beyond the
scope of this book and is therefore not included here. It @ugh to state that lossless codes allow the
image in these examples to be compressed in practice at(rateder of bits/pixel) arbitrarily close to
those expressed by the entropy values that have been shown.

The histograms of all subimages, except the one with lowesfuency content (i.e., the top left
subimage), have only one mode and are centered at zero,ai&hHat usually decay with exponential
behavior. This means that many of the subimage pixels argresbto the quantized interval centered
at zero. Run-length coding is a lossless coding scheme titatdes sequences of zeros by a special
symbol denoting the beginning of such sequences, followebdlength of the sequenééThis different
representation allows for further reduction of the subiesagntropy after the quantization, and thus, run-
length coding can be used to improve, without any loss ofityidhe compression ratios shown in the
examples of this section.

37N.S. Jayant and P. Knoligital Coding of WaveformsPrentice Hall, Englewood Cliffs NJ, 1984.
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Figure 46: Thek, £-path of theL-channel transmultiplexer structure.

9 Transmultiplexers

In the United States and most other countries, the telepkendce employs two types of multiplexing
schemes to transmit multiple low-frequency voice signaksr@ wide-band channel. In tHequency-
division multiplex(FDM) telephone system, multiple analog voice signals as¢ finodulated by single-
sideband (SSB) modulators onto several subcarriers, cwdband transmitted simultaneously over a
common wide-band channel. To avaishss-talk the subcarriers are chosen to ensure that the spectra of
the modulated signals do not overlap. At the receiving émelntodulated subcarrier signals are separated
by analog bandpass filters and demodulated to reconstredhélividual voice signals. On the other
hand, in thetime-division multipleXTDM) telephone system, the voice signals are first conderte
digital signals by sampling and A/D conversion. The sampfethe digital signals are time-interleaved
by a digital multiplexer, and the combined signal is trartsedi. At the receiving end, the digital voice
signals are separated by a digital demultiplexer and thesgqubthrough a D/A converter and an analog
reconstruction filter to recover the original analog voigmals.

The TDM system is usually employed for short-haul commuiwca while the FDM scheme is pre-
ferred for long-haul transmission. Until the telephones&xr becomes all digital, it is necessary to trans-
late signals between the two formats. This is achieved byramsmultiplexer system discussed next.

The transmultiplexeiis a multi-input, multi-output, multirate structure, asm in Figure45s. It is
exactly the opposite to that of the-channel QMF bank of Figure 14.18 of Text and consists of.an
channel synthesis filter bank at the input end, followed by.azhannel analysis filter bank at the output
end. To determine the input—output relation of the transipleker, consider one typical path from the
kth input to thelth output as indicated in Figudt(a) 3 A polyphase representation of the structure of
Figure45is shown in Figuret7(a). Invoking the identity of Section 13.4.5, we note tha #tructure
of Figure46(a) is equivalent to that shown in Figudé(b), consisting of an LTI branch with a transfer
function Fi¢(z) that is the zeroth polyphase componenthf(z)G¢(z). The input—output relation of the

38p.P. VaidyanatharMultirate Systems and Filter BankBrentice Hall, Englewood Cliffs NJ, 1993.
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transmultiplexer is therefore given by

L—-1
Yi(@) = ) Fe(@Xe(2). 0<k<L-1. (112)
=0
Denoting
Y(z)=[Yo(z) Yi(z) - Y1(@]. (113a)
X(z) = [Xo(z) Xi(z2) - X2, (113b)
we can rewrite Eq.J12) as
Y(z) = F(2)X(2), (114)

whereF(z) is an L x L matrix whose(k, £)th element is given by ,(z). The objective of the trans-
multiplexer design is to ensure thgt[n] is a reasonable replica of, [n]. If yi[n] contains contributions
from x, [n] with r # n, then there igross-talkbetween these two channels. It follows from EifL4) that
cross-talk is totally absent if (z) is a diagonal matrix, in which case E4.14) reduces to

Yi(z) = Fri(2)Xp(2), 0<k=<L-1 (115)

As in the case of the QMF bank, we can define three types ofrraltiplexer systems. It is a phase-
preserving system i, (z) is a linear-phase transfer function for all valueskof Likewise, it is a
magnitude-preserving systemfif.x (z) is an allpass function. Finally, for a perfect reconstretirans-
multiplexer,

Fie(z) =apz "%, 0<k<L-1, (116)
whereny is an integer andy, is a nonzero constant. For a perfect reconstruction sysig] =
arxg[n —ngl.

The perfect reconstruction condition can also be derive@ims of the polyphase components of
the synthesis and analysis filter banks of the transmukiéplef Figure45, as shown in Figurd7(a)3°
Using the cascade equivalences of Figure 13.14, we arritteeatquivalent representation indicated in
Figure47(b). Note that the structure in the center part of this figsra special case of the system of
Figure45, whereGy(z) = z~ &= and Hy(z) = z %, with £,k = 0,1,..., L — 1. Here the zeroth
polyphase component éf,, (z)G¢(z) isz~! for£ = 0,1, ..., L — 2, the zeroth polyphase component
of Hy(z)Gr—1(z) is 1, and the zeroth polyphase componenthf(z) G, (z) is 0 for all other cases. As a
result, a simplified equivalent representation of Figdirg) is as shown in Figuré8.

The transfer matrix characterizing the transmultiplesehus given by

0
Z_1|L_1

F(z) = E(2) [ (1)} R(z), (117)
wherel;_; isan(L—1) x (L —1) identity matrix. Now, for a perfect reconstruction systetig sufficient
to ensure that

F(z) = dz7"1p, (118)

wheren, is a positive integer. From Eqsl17) and (L18 we arrive at the condition for perfect recon-
struction in terms of the polyphase components as

R(z)E(z) = dz™™ [291 'Lo‘l } , (119)

39R.D. Kaoilpillai, T.Q. Nguyen, and P.P. Vaidyanathan, Somsuits in the theory of crosstalk-free transmultiplextE&E Trans.
on Signal Processing9:2174-2183, October 1991.
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Figure 48: Simplified equivalent circuit of Figuré?.

wherem, is a suitable positive integer.

It is possible to develop a perfect reconstruction transiplaker from a perfect reconstruction QMF
bank with analysis filteré¢d,(z) and synthesis filter&,(z), with a distortion transfer function given by
T(z) = dz—%, whered is a nonzero constant arid is a positive integer. It can be shown that a perfect
reconstruction transmultiplexer can then be designedyubi@ analysis filtergi,(z) and synthesis filters
z7RGy(z), whereR is a positive integer less thansuch thatR + K is a multiple of . We illustrate this
approach in Exampl&1.37

EXAMPLE 11

Consider the perfect reconstruction analysis/synthdtes ffiank of Example 14.8 with an input—output

Design of a Perfect Reconstruction Transmultiplexer
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relationy[n] = 4x[n — 2]. In this case, the analysis and synthesis filters are given by

Ho(z)=14z14272 H@@=1-z14+22  Hyz)=1-2z72,
Go(z) =142z 4272 Gi(z)=1-2z"1 4272, Ga(z) = -2+2272.

Here,d = 4 and K = 2. We thus choos® = 1 so thatR + K = 3. The synthesis filters of the
transmultiplexer are thus given by 1 G (z).

We now examine the products ! G,(z) Hy (z), for £,k = 0, 1, 2, and determine their zeroth polyphase
components. Thus,

Z_IG()(Z)H()(Z) =z 14322443 4374470

)

whose zeroth polyphase component is givertby!, and henceyg[n] = 4xo[n — 1]. Likewise,
Z_IGI(Z)HI (z) = o322 43 3 0,
with a zeroth polyphase componett™!, resulting iny; [n] = 4x[n — 1]. Similarly,
2 Ga(2)Ha(z) = =227V 44273 — 2272,

whose zeroth polyphase component is again', implying y»[n] = 4x,[n — 1]. It can be shown that
the zeroth polyphase components for all other productss, (z) Hy (z), with £ # k, is0, indicating a
total absence of cross-talk between channels.

In a typical TDM-to-FDM format translation, 12 digitizedesgch signals are interpolated by a factor
of 12, modulated by single-sideband modulation, digitallynmed, and then converted into an FDM
analog signal by D/A conversion. At the receiving end, thaleg signal is converted into a digital signal
by A/D conversion and passed through a bank of 12 singlesaiti® demodulators whose outputs are
then decimated, resulting in the low-frequency speechatigrirhe speech signals have a bandwidth of
4 kHz and are sampled at an 8-kHz rate. The FDM analog sigralpies the band 60 kHz to 108 kHz,
as illustrated in Figurd9. The interpolation and the single-sideband modulationtmperformed by
up-sampling and appropriate filtering. Likewise, the stagideband demodulation and the decimation
can be implemented by appropriate filtering and down-samgpli
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10 Discrete Multitone Transmission of Digital Data

Binary data are normally transmitted serially as a pulda tes indicated in Figur80(a). However, in or-
der to faithfully extract the information transmitted, teeeiver requires complex equalization procedures
to compensate for channel imperfection and to make full isleeochannel bandwidth. For example, the
pulse train of Figur®&0(a) arriving at the receiver may appear as indicated in [Ei§Q¢b). To alleviate the
problems encountered with the transmission of data as a pal#s, frequency-division multiplexing with
overlapping subchannels has been proposed. In such a sgstelmbinary digi¢,, r = 0,1,2,...,N—1,
modulates a subcarrier sinusoidal signal(@as¢/ T, as indicated in Figurg0(c), for the transmission
of the data of Figur&0(a), and then the modulated subcarriers are summed andittetsas one com-
posite analog signal. At the receiver, the analog signaassed through a bank of coherent demodulators
whose outputs are tested to determine the digits transinitiais is the basic idea behind the multicarrier
modulation/demodulation scheme for digital data transiois

A widely used form of the multicarrier modulation is the diste multitone transmission (DMT)
scheme in which the modulation and demodulation processesnplemented via the discrete Fourier
transform (DFT), efficiently realized using fast Fouriertsform (FFT) methods. This approach leads to
an all-digital system, eliminating the arrays of sinusb@knerators and the coherent demodulatéts.

We outline here the basic idea behind the DMT scheme{dgt]} and{bi[n]}, 0 < k < M — 1,
be twoM — 1 real-valued data sequences operating at a sampling rdig tfat are to be transmitted.
Define a new set of complex sequen¢eg|n]} of lengthN = 2M according to

apln], k=0,

ak[n] + jbi(n], 1<k=<?¥
bo[n], k=7,
an—kn] — jby—kln], T +1<k=<N-1

-1,
(120)

[=Z]

ak[n] =

We apply an inverse DFT, and the above sefVosequences is transformed into another new se¥ of
signals{u,[n]}, given by

N—1
1
weln] = 5 > ealnWy™, 0<L=N-1, (121)
k=0

whereWy = e=/27/N Note that the method of generation of the complex sequestdegn]} ensures
that its IDFT {u¢[n]} will be a real sequence. Each of the§esignals is then upsampled by a factor of
N and time-interleaved, generating a composite si¢gnpd]} operating at a rate o¥ Fy that is assumed
to be equal t@ F.. The composite signal is converted into an analog sigpél) by passing it through
a D/A converter, followed by an analog reconstruction filiEne analog signat, () is then transmitted
over the channel.

At the receiver, the received analog sigmal?) is passed through an analog anti-aliasing filter and
then converted into a digital signé¥[n]} by an S/H circuit, followed by an A/D converter operating at a
rate of N Fr = 2F.. The received digital signal is then deinterleaved by aydelein containingV — 1
unit delays, whose outputs are next down-sampled by a fat§r, generating the set of signdls;[n]}.

40A. Peled and A. Ruiz, Frequency domain data transmissiomgusiduced computational complexity algorithmsPhoc. IEEE
International Conference on Acoustics, Speech and SigmaleBsing pages 964—967, Denver CO, April 1980.

41J.M. Cioffi, A multicarrier primer, ANSI T1E1.4 Committee Contribution, Boca Raton FL, Novemb991.
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Figure50: (a) Serial binary data stream, (b) baseband serially tratesisignal at the receiver, and (c) signals
generated by modulating a set of subcarriers by the digitiseopulse train in (a).

Applying the DFT to theséV signals, we finally arrive a¥ signals{f[n]}
N—-1
Belnl = > wlnwif.  0<k=<N-1. (122)
£=0

Figure51 shows schematically the overall DMT scheme. If we assumé&éugiency response of the
channel to have a flat passband and assume the analog rectinatand anti-aliasing filters to be ideal
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Figure51: The DMT scheme: (a) transmitter and (b) receiver.

lowpass filters, then neglecting the nonideal effects ofdh and the A/D converters, we can assume
y[n] = x[n]. Hence, the interleaving circuit of the DMT structure atti@smitting end connected to the
deinterleaving circuit at the receiving end is identicallte same circuit in the transmultiplexer structure
of Figure47(b) (with L = N). From the equivalent representation given in Figi8git follows that

veln] =ug—1[n—1], 0=k <N -2,

vo[n] = un—1[n], (123)
or, in other words,

Brlnl = ax—y[n—1], 0=k <N -2,

Boln] = an—1[n]. (124)

Transmission channels, in general, have a bandpass freguesponseicn( /), with a magnitude
response dropping to zero at some frequefgy In some cases, in the passband of the channel, the
magnitude response, instead of being flat, drops very rapidiside its passband, as indicated in Fig-
ure52. For reliable digital data transmission over such a chaanelits recovery at the receiving end, the
channel’s frequency response needs to be compensateddnyiakhg a highpass equalizer at the receiver.
However, such an equalization also amplifies high-frequenise that is invariably added to the data
signal as it passes through the channel.

For a large value of the DFT length, the channel can be assumed to be composed of a series of
contiguous narrow-bandwidth bandpass subchannels. lhahdwidth is reasonably narrow, the corre-
sponding bandpass subchannel can be considered to havpraxiagately flat magnitude response, as
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Figure 52: Frequency response of a typical band-limited channel.

indicated by the dotted lines in Figus2, and the channel can be approximately characterized bykesin
complex number given by the value of its frequency respohge-a 27k /N. The values can be deter-
mined by first transmitting a known training signal of unmtaded carriers and generating the respective
channel frequency response samples. The real data sampliea divided by these complex numbers
at the receiver to compensate for channel distortion.

Further details on the performance of the above DMT scherderuronideal conditions can be found
in the literature®®- 42 43

11 Oversampling A/D Converter

For the digital processing of an analog continuous-timealighe signal is first passed through a sample-
and-hold circuit whose output is then converted into a dlddrm by means of an A/D converter. How-
ever, according to the sampling theorem, discussed in@e8tB.1 of Text, a band-limited continuous-
time signal with a lowpass spectrum can be fully recoverethfits uniformly sampled version if it is
sampled at a sampling frequency that is at least twice theeSigfrequency contained in the analog sig-
nal. If this condition is not satisfied, the original contius-time signal cannot be recovered from its
sampled version because of aliasing. To prevent aliadieganalog signal is thus passed through an ana-
log anti-aliasing lowpass filter prior to sampling, whicH@ees the condition of the sampling theorem.
The passband cutoff frequency of the lowpass filter is chesgial to the frequency of the highest signal
frequency component that needs to be preserved at the oufpetanti-aliasing filter also cuts off all
out-of-band signal components and any high-frequencyerthiat may be present in the original analog
signal, which otherwise would alias into the baseband a#erpling. The filtered signal is then sampled
at a rate that is at least twice that of the cutoff frequency.

Let the signal band of interest be the frequency rahge f < F,,. Then, the Nyquist rate is given
by Fy = 2F,,. Now, if the sampling ratér is the same as the Nyquist rate, we need to use before the
sampler an anti-aliasing lowpass filter with a very sharpffun its frequency response, satisfying the
requirements as given by Eq. (A.35) in Appendix A of T&tThis requires the design of a very high-
order anti-aliasing filter structure built with high-prsigin analog components, and it is usually difficult
to implement such a filter in VLSI technology. Moreover, sacfilter also introduces undesirable phase

42J.A.C. Bingham, Multicarrier modulation for data transsiis: An idea whose time has coMEEE Communications Maga-
zing pages 5-14, May 1990.

43K. Shenoi Digital Signal Processing in Telecommunicatjd®rentice Hall, Englewood Cliffs NJ, 1995.

44Recall thatF = 1/ T, whereT is the sampling period.
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distortion in its output. An alternative approach is to séamipe analog signal at a rate much higher
than the Nyquist rate, use a fast low-resolution A/D corerer@nd then decimate the digital output of
the converter to the Nyquist rate. This approach relaxestihep cutoff requirements of the analog anti-
aliasing filter, resulting in a simpler filter structure tieah be built using low-precision analog components
while requiring fast, more complex digital signal procegsghardware at later stages. The overall structure
is not only amenable to VLSI fabrication but also can be desitto provide linear-phase response in the
signal band of interest.

The oversampling approach is an elegant application ofiratét digital signal processing and is
increasingly being employed in the design of high-resoluth/D converters for many practical sys-
tems?>46 |n this section, we analyze the quantization noise perfagaaf the conventional A/D con-
verter and show analytically how the oversampling apprateztreases the quantization noise power in
the signal band of intere$t. We then show that further improvement in the noise perfocaar an over-
sampling A/D converter can be obtained by employing a sigelta (X' A) quantization scheme. For
simplicity, we restrict our discussion to the case of a bigtorder sigma-delta quantizer.

To illustrate the noise performance improvement propedwpsider ab-bit A/D converter operating
at Fr Hz. Now, for a full-scale peak-to-peak input analog voltajeRrs, the smallest voltage step
represented by bits is

Res _ Rrs
2617 267
From Eq. (12.70) of Text, the rms quantization noise powgeof the error voltage, assuming a uniform
distribution of the error betweenAV /2 andAV/2, is given by

AV = (125)

, (AV)?
o, = .
12
The rms noise voltage, given by, therefore has a flat spectrum in the frequency range freonfr /2.
The noise power per unit bandwidth, called tiedse densityis then given by

(126)

_(@an?i2 _(avy

Py = 127
en Fr/2 6Fr (127)

A plot of the noise densities for two different sampling gate shown in Figuré3, where the shaded

portion indicates the signal band of interest. As can be feemthis figure, the total amount of noise in
the signal band of interest for the high sampling rate casenaller than that for the low sampling rate
case. The total noise in the signal band of interest, cafleahtband noise poweis given by

(Rrs/2%)?  Fm
12 Fr/2

(128)

P total =

Itis interesting to compute the needed wordlengytif the A/D converter operating at the Nyquist rate
in order that its total noise in the signal band of interestdpeal to that of &-bit A/D converter operating
at a higher rate. Substitutinr = 2 F,, and replacing with g in Eq. (128, we arrive at

(Rrs/2%)? _ (Rrs/2%)?  Fm
12 12 Fr/2

(129)

P, total =

45J.C. Candy and G.C. Temes. Oversampling methods for A/D dAdcBnversion. In J.C. Candy and G.C. Temes, editors,
Oversampling Delta-Sigma Data Convertepages 1-25, IEEE Press, New York NY, 1992.

46M.E. Frerking.Digital Signal Processing in Communication Systeka Nostrand Reinhold, New York NY, 1994.
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which leads to the desired relation )
B=b+ 3 log, M, (130)

whereM = Fr/2F, denotes th@versampling ratiqdOSR). Thus,8 — b denotes the increase in the
resolution of ab-bit converter whose oversampled output is filtered by aalidgck-wall lowpass filter.
A plot of the increase in resolution as a function of the oaegling ratio is shown in Figurg4. For
example, for an OSR oM = 1000, an 8-bit oversampling A/D converter has an effective netboh
equal to that of a 13-hit A/D converter operating at the Nggtate. Note that Eq1@0 implies that the
increase in the resolution Pzrrbit per doubling of the OSR.

We now illustrate the improvement in the noise performana®ioed by employing a sigma-delta
(¥ A) quantization scheme. The sigma-delta A/D converter is shiowlock-diagram form in Figuré5
for convenience. This figure also indicates the samplingsrat various stages of the structure. It should
be noted here that the 1-bit output samples of the quantitesrdecimation becomg-bit samples at the
output of the sigma-delta A/D converter due to the filteripg@tions involving-bit multiplier coeffi-
cients of theM th-band digital lowpass filter.

Since the oversampling rati®f is typically very large in practice, the sigma-delta A/D werter is
most useful in low-frequency applications such as digi&phony, digital audio, and digital spectrum
analyzers. For example, Figus®é shows the block diagram of a typical compact disk encodirstesy
used to convert the input analog audio signal into a digitadtbeam that is then applied to generate the
master disk’ Here, the oversampling sigma-delta A/D converter empldyasia typical input sampling

473.P.J. Heemskerk and K.A.S. Immink. Compact disc: Systgracs and modulationPhilips Technical Review40(6):157—
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Figure 57: Sigma-delta quantization scheme: (a) quantizer and (djstsete-time equivalent.

rate of 3175.2 kHz and an output sampling rate of 44.1 ¥Hz.

To understand the operation of the sigma-delta A/D converfté-igure 55, we need to study the
operation of the sigma-delta quantizer shown in Fighif@). To this end, it is convenient to use the
discrete-time equivalent circuit of Figut¥(b), where the integrator has been replaced with an accumu-
lator*® Here, the inpuk[n] is a discrete-time sequence of analog samples developiogtpnt sequence
of binary-valued samplesg(n]. From this diagram, we observe that, at each discrete insfaime, the
circuit forms the differencéA) between the input and the delayed output, which is accueailay a
summern(X') whose output is then quantized by a one-bit A/D convertet,ith, a comparator.

Even though the input—output relation of the sigma-deltangizer is basically nonlinear, the low-

165, 1982.

483.J. Van der Kam. A digital “decimating” filter for analog-ttigital conversion of hi-fi audio signal®hilips Technical Review
42:230-238, 1986.

491 practice, the integrator is implemented as a discrete-switched-capacitor circuit.
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Figure58: (a) Input and (b) output waveforms of the sigma-delta quantdf Figure57(a) for a constant input.

frequency content of the input (1) can be recovered from the outpfz] by passing it through a digital
lowpass filter. This property can be easily shown for a canistgput analog signat, (1) with a magnitude

less thart-1. In this case, the output[r] of the accumulator is a bounded sequence with sample values
equal to either-1 or +1. This can happen only if the input to the accumulator has anaae value of
zero. Or in other words, the average valueuh] must be equal to the average value of the ingut.>°
Examplesl2 and13illustrate the operation of a sigma-delta quantizer.

EXAMPLE 12  Sigma-Delta Quantization of a Constant Amplitude Signal

We first consider the operation for the case of a constantt isigmal using MTLAB. To this end,

we can use Program 11 in Sectitd. The plots generated by this program are the input and output
waveforms of the sigma-delta quantizer of Figb6ia) and are shown in Figu&8. The program also
prints the average value of the output as indicated below:

Average value of output is =
0.8095

which is very close to the amplitude 0.8 of the constant infiudan be easily verified that the average
value of the output gets closer to the amplitude of the comgtput as the length of the input increases.

EXAMPLE 13  Sigma-Delta Quantization of a Sinusoidal Signal

We now verify the operation of the sigma-delta A/D convelf@r a sinusoidal input of frequency
0.01 Hz using MTLAB. To this end, we make use of the Program 12 in Sectién Because of
the short length of the input sequence, the filtering opemat performed here in the DFT domdi.
Figure59shows the input and output waveforms of the sigma-deltatquearof Figure57(a) for a sinu-
soidal input. Figureés0 depicts the lowpass filtered version of the output signalvshio Figure59(b).
As can be seen from these figures, the filtered output is naaréxact replica of the input.

It follows from Figure57(b) that the outpuy [r] of the quantizer is given by
y[n] = win] + e[n], (131)

where
wln] = x[n] — y[n — 1]+ win — 1]. (132)

50R. SchreierNoise-Shaped CodindPhD thesis, University of Toronto, Toronto Canada, 1991.
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Figure 59: Input and output waveforms of the sigma-delta quantizerngdife 57(a) with a sine wave input.
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Figure 60: The lowpass filtered version of the waveform of FigGegb).

From Egs. £31) and (L32), we obtain, after some algebra,
y[n] = x[n] + (e[n] —e[n — 1]), (133)

where the quantity inside the parentheses represents tbe thee to sigma-delta modulation. The noise
transfer function is simphG(z) = (1 — z~!). The power spectral density of the modulation noise is

therefore given by
2nfT

P =[G Pt = ssiv (P P, (134)

where we have assumed the power spectral deisity) of the quantization noise to be the one-sided
power spectral density defined for positive frequenciey.oRbr a random signal input[n], P.(f) is
constant for all frequencies and is given by

(@vy 2 (135)

Pe(f) =53

Substituting Eq.135 in Eq. (134), we arrive at the power spectral density of the output na@jsen by

2(AV)?

T Sin(f T). (136)

Py(f)=

The noise-shaping provided by the sigma-delta quantizemdar to that encountered in the first-order
error-feedback structures of Section 9.10.1 and showngarEi9.42. For a very large OSR, as is usually
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the case, the frequencies in the signal band of interest ach smaller tharF, the sampling frequency.
Thus, we can approximat®, ( /) of Eq. (136) as

(AV)?
Fr

From Eqg. 37), the in-band noise power of the sigma-delta A/D convegdhis given by

Py(f) =2 (mfT)* = 27*(AV)?T? f2, f << Fr. (137)

Fy, Fp
Protatsd = /0 Py(f)df = 223(AV)’T? /0 FHf = SR AVPT R . (138)

It is instructive to compare the noise performance of thensiglelta A/D converter with that of a
direct oversampling A/D converter operating at a samplatg of Fr with a signal band of interest from
dc to F,,,. From Eq. (29, the in-band noise power of the latter is given by

Protalos = %(AV)ZTFm- (139)

The improvement in the noise performance is therefore giyen

(Ptotal,os) _ (3M2) _
10log,, = 10log;y | —— ) = —5.1718 + 20109, ((M) dB, (140)
Ptotal,sd w2

where we have useM = Fr/2F,, to denote the OSR. For example, for an OSRMf= 1000, the
improvement in the noise performance using the sigma-dedtaulation scheme is about 55 dB. In this
case, the increase in the resolution is about 1.5 bits peslihguof the OSR.

The improved noise performance of the sigma-delta A/D cdeveesults from the shape hf(eﬂ”fT) |
which decreases the noise power spectral density in-@ard f° < F,,), while increasing it outside the
signal band of interestf > F,;). Since this type of converter also employs oversamplinggtires a
less stringent analog anti-aliasing filter.

The A/D converter of Figur&5employs a single-loop feedback and is often referred to astediider
sigma-delta converter. Multiple feedback loop modulatechemes have been advanced to reduce the
in-band noise further. However, the use of more than twolfaeki loops may result in unstable operation
of the system, and care must be taken in the design to ensile speratiort3

As indicated in Figuré5, the quantizer output is passed throughtith-band lowpass digital filter
whose output is then down-sampled by a factoMbto reduce the sampling rate to the desired Nyquist
rate. The function of the digital lowpass filter is to elimi@ahe out-of-band quantization noise and
the out-of-band signals that would be aliased into the masslby the down-sampling operation. As a
result, the filter must exhibit a very sharp cutoff frequenesponse with a passband edgegt This
necessitates the use of a very high-order digital filter. racpice, it is preferable to use a filter with a
transfer function having simple integer-valued coeffitsen reduce the cost of hardware implementation
and to permit all multiplication operations to be carried atithe down-sampled rate. In addition, most
applications require the use of linear-phase digital Bltavhich can be easily implemented using FIR
filters.

Further details on first- and higher-order sigma-delta ecievs can be found in Candy and Terfiks.

12 Oversampling D/A Converter

As indicated earlier in Section 3.8 of Text, the digitalanalog conversion process consists of two steps:
the conversion of input digital samples into a staircasdinanus-time waveform by means of a D/A
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Figure 61: Block diagram representation of an oversampling sigmead@lA converter.

converter with a zero-order hold at its output, followed lnyaamalog lowpass reconstruction filter. If the
sampling rateFr of the input digital signal is the same as the Nyquist rate aiialog lowpass reconstruc-
tion filter must have a very sharp cutoff in its frequency msge, satisfying the requirements of Eq. (A.38)
in Appendix A of Text. As in the case of the anti-aliasing filtéhis involves the design of a very high-
order analog reconstruction filter requiring high-premisanalog circuit components. To get around the
above problem, here also an oversampling approach is ofted, in which case a wide transition band
can be tolerated in the frequency response of the recotisindfiter allowing its implementation using
low-precision analog circuit components, while, requgranmore complex digital interpolation filter at
the front end.

Further improvement in the performance of an oversamplifgd@nverter is obtained by employing
a digital sigma-delta 1-bit quantizer at the output of thgitdi interpolator, as indicated in Figuéd. for
conveniencé®>2 The quantizer extracts the MSB from its input and subtrdetsréemaining LSBs, the
guantization noise, from its input. The MSB output is thed fieto a 1-bit D/A converter and passed
through an analog lowpass reconstruction filter to remov&eduency components beyond the signal
band of interest. Since the signal band occupies a very soelbn of the baseband of the high-sample-
rate signal, the reconstruction filter in this case can hawerawide transition band, permitting its real-
ization with a low-order filter that, for example, can be iemlented using a Bessel filter to provide an
approximately linear phase in the signal b&Ad.

The spectrum of the quantized 1-bit output of the digitahsgdelta quantizer is nearly the same as
that of its input. Moreover, it also shapes the quantizatioise spectrum by moving the noise power out
of the signal band of interest. To verify this result analgliy, consider the sigma-delta quantizer shown
separately in Figuré2. It follows from this figure that the input—output relatiohtbe quantizer is given
by

yln] —e[n] = x[n] —e[n — 1],

or, equivalently, by
yn] = x[n] + e[n] —e[n — 1], (1412)

wherey[n] is the MSB of theith sample of the adder output, a#ld] is thenth sample of the quantization
noise composed of all bits except the MSB. From BEdl1j, it can be seen that the transfer function
of the quantizer with no quantization noise is simply unégd the noise transfer function is given by
G(z) = 1 —z7!, which is the same as that for the first-order sigma-deltautatdr employed in the
oversampling A/D converter discussed in the previouseecti

51J.C. Candy and A-N. Huynh. Double interpolation for digilanalog conversionEEE Trans. on Communication€OM-
34:77-81, January 1986.

52E. Larson and G.C. Temes. Signal conditioning and interfeircuits. In S.K. Mitra and J.F. Kaiser, editoksandbook for
Digital Signal Processingchapter 10, pages 677—720. Wiley-Interscience, New Yofk1993.

53See Sectior??.
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Figure 62: The sigma-delta quantizer.
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Figure 63: Input and output signals of (a) lower-rate D/A converter @ndoversampling D/A converter.

Examplesl4 and 15 illustrate the operation of a sigma-delta D/A converterdatiscrete-time sinu-

soidal input sequence.

EXAMPLE 14  Illustration of the Oversampling D/A Conversion

Let the input to the D/A converter be a sinusoidal sequen@eqgfiency 100 Hz operating at a sampling
rate Fy of 1 kHz. Figure63(a) shows the digital input sequence and the analog outmergeed by a
D/A converter operating a7 from this input. Figuré3(b) depicts the interpolated sinusoidal sequence
operating at a higher sampling rate of 5 kHz, obtained byipgshe low-sampling-rate sinusoidal
signal through a factor-of-5 digital interpolator and tf@responding analog output generated by a
D/A converter operating aéiFr rate. If we compare the two D/A converter outputs, we can Bae t
the staircase waveform of the oversampling D/A convertgpuilis much smoother with smaller jumps
than that of the lower-rate D/A converter output. Thus, thersampling D/A converter output has
considerably smaller high-frequency components in cehtmthe lower-rate D/A converter. This fact
can be easily verified by examining their spectra.

The high-frequency components in the baseband outsidéghal ®and of interest can be removed by
passing the D/A converter output through an analog lowpéss, fivhich also eliminates any leftover
replicas of the baseband not completely removed by the @eter hold in the D/A converter. Since
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Figure 64: Lowpass filtered output signals of (a) conventional D/A ater and (b) oversampling D/A converter.

the signal band of interest occupies a small portion of tieeband, the replicas of the signal band im-
mediately outside the baseband are widely separated fresighal band inside the baseband. Hence,
the lowpass filter can be designed with a very wide transitiand. Moreover, due to reduced high-
frequency components in the D/A converter output causedvbysampling, the stopband attenuation
also does not have to be very large. On the other hand, thieasmlf the signal band in the spectrum
of the output of the low-rate D/A converter are closely spla@ad the high-frequency components are
relatively large in amplitudes. In this case, the lowpassrfihust have a sharp cutoff with much larger
stopband attenuation to effectively remove the undesioatbonents in the D/A converter output.

Figure 64 shows the filtered outputs of the conventional lower-rateé @versampled D/A converters
when the same lowpass filter with a wide transition band igl isboth cases. As can be seen from this
figure, the analog output in the case of the low-rate D/A caevestill contains some high-frequency
components, while that in the case of the oversampled D/#exter is very close to a perfect sinusoidal
signal. A much better output response is obtained in theafeseonventional D/A converter if a sharp
cutoff lowpass filter is employed, as indicated in Figake

EXAMPLE 15 Illustration of the Operation of the Sigma-Delta D/A Converter Using MATLAB

In this example, we verify using MrLAB the operation of the sigma-delta D/A converter for a sinu-
soidal input sequence of frequency 100 Hz operating at a ls@gnmate Fr of 5 kHz. The signal is
clearly oversampled since the sampling rate is much hidfeer the Nyquist rate of 200 Hz. Program
13 in Sectionl4 first generates the input digital signal, then generatesoavadued digital signal by
guantizing the output of the sigma-delta quantizer, andlfirdevelops the output of the D/A converter
by lowpass filtering the quantized output. As in the case efsiigma-delta converter of Exampilé,

the filtering operation here has also been performed in thE @inain due to the short length of the
input sequencé®

Figure66 shows the digital input signal, the quantized digital otitpithe sigma-delta quantizer, and
the filtered output of the D/A converter generated by thigpam. As can be seen from these plots, the
lowpass filtered output is nearly a scaled replica of therddsiinusoidal analog signal.

One of the most common applications of the oversamplingaigeita D/A converter is in the compact

disk (CD) player. Figuré&7 shows the block diagram of the basic components in the sjgoakssing
part of a CD player, where typically a factor-of-4 oversaimgpD/A converter is employed for each audio
channef* Here, the 44.1-kHz input digital audio signal is interpetafirst by a factor of 4 to the 176.4-
kHz rate and then converted into an analog audio signal.

54D. Goedhart, R.J. Van de Plassche, and E.F. Stikvoort. diitanalog conversion in playing a compact dbilips Technical
Review 40(6):174-179, 1982.
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Figure 68: Uniform linear antenna array.

13 Sparse Antenna Array Design

Linear-phased antenna arrays are used in radar, sonasautrd imaging, and seismic signal processing.
Sparse arrays with certain elements removed are econoamndalas a result, are of practical interest.
There is a mathematical similarity between the far-fielda@on pattern for a linear antenna array of
equally spaced elements and the frequency response of afiltEtRThis similarity can be exploited to
design sparse arrays with specific beam patterns. In thibsewe point out this similarity and outline
a few simple designs of sparse arrays. We restrict our @tehere on the design of sparse arrays for
ultrasound scanners.

Consider a linear array a¥ isotropic, equispaced elements with inter-element sgatiand located
atx, =n-dfor0 <n < N — 1, as shown in Figuré8. The far-field radiation pattern at an angle
away from the broadside (i.e., the normal to the array) vsmgby

N-1
P(u) = Z w(n]e/ BT/ Mdln (142)
n=0

wherew|n] is the complex excitation or weight of thiéh element) is the wavelength, and = sin6. The
function P (u) thus can be considered as the discrete-time Fourier tnansfbw[n], with the frequency
variable given b2z (u/A)d. The array element weighting[r] as a function of the element position is
called theaperture functionFor a uniformly excited arrayy[n] = a constant, and the grating lobes in the
radiation pattern are avoideddf < A/2. Typically,d = A/2, in which case the range ofis between-n=
andrz. From Eq. (42), it can be seen that the expression Riiz) is identical to the frequency response
of an FIR filter of lengthV. An often used element weightis[n] = 1 whose radiation pattern is this
same as the frequency response of a running-sum or boxcdilterR

Sparse arrays with fewer elements are obtained by remoeimg ®f the elements, which increases
the interelement spacing between some consecutive pagkewfents to more thah/2. This usually
results in an increase of sidelobe levels and can possihigecthe appearance of grating lobes in the
radiation pattern. However, these unwanted lobes can heeedsignificantly by selecting array element
locations appropriately. In the case of ultrasound scamreetwo-way radiation pattern is generated by
a transmit array and a receive array. The design of suchsaisagimplified by treating the problem as
the design of an “effective aperture functiom s ¢ [], which is given by the convolution of the transmit
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aperture functionvr[n] and the receive aperture function[n]:5°

Werrn] = wr[n]@ wr(n]. (143)

If the number of elements (including missing elements) @nttie transmit and receive arrays are, respec-
tively, L and M, then the number of elementé in a single array with an effective aperture function
werrln]is L + M — 1. The design problem is thus to determing([n] andwr 1] for a desiredo, s 7 [n].

13.1 The Polynomial Factorization Approach

In thez-domain, Eq. {43 is equivalent to

Porr(z) = Pr(2) Pr(2), (144)
where

N-1 L-1 M-1
Perr(z) = Z Wery[n]z™", Pr(z) = Z wrln]z ™", Pr(z) = Z wrln]z™".  (145)
n=0 n=0 n=0

As a result, the sparse antenna array design problem canrbaléded as the factorization of the poly-

nomial P, rr(z) into factorsPr(z) and Pg(z) with missing coefficients. We first consider the design of
a uniform array for whichw, s¢[n] = 1. To this end, we can make use of the following factorizatién o
P, r7(z) for values ofN that are powers-of-%

_2K71

Perr(z)=(1+zH(1+z2)-(1+2 ), (146)

whereN = 2K,

13.2 Uniform Effective Aperture Function

We now illustrate the application of the above factorizatapproach to sparse array design for the case
N = 16; thatis,K = 4. From Eq. (46) we then have
Pepr(z) = (1 4z H(A+ 270 +27H(1 +27%).
Three possible choices fdtr (z) and Pgr(z) are as follows:
Design#1L Pr(z) =1,
Pr(z)=(1+zHA+z)A+zH1 +27%)
=14z 422422427 42 20
+ Z—S + Z—9 + Z—IO + Z—ll + Z—12 + Z—13 +Z—14 + Z_IS,
Design#2 Pr(z)=1+z"1,
PR(Z)=(1+z)(1+zH(1+:z78)
=14+ Z—2 + 2_4 + 2_6 + Z—S + Z—IO + Z—12 + 2_14,
Design#3 Pr(z)=(1+zH(1+z ) =1+z14+28 4277,
PR =0 +zHU+zH=14+2242*4+2°

55G.R. Lockwood, P-C. Li, M. O’'Donnell, and F.S. Foster. Ogfiing the radiation pattern of sparse periodic linear &THyEE
Trans. on Ultrasonics Ferroelectrics, and Frequency Coh#3:7-14, January 1996.

565.K. Mitra, M.K. Tchobanou, and G. Jovanovic-Dolecek. A lenapproach to the design of one-dimensional sparse antenn
arrays. InProc. IEEE International Symposium on Circuits & SystelMay 2004, pages IlI-541-111-544, VVancouver, B.C., Canada
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Figure 69: Radiation patterns of transmit array (dotted line), reeeikray (dashed line), and two-way radiation
pattern (solid line). The radiation patterns have beeresday a factor of 16 to make the value of the two-way
radiation pattern at = 0 unity.

Additional choices forPr (z) and Pr(z) can be found elsewheré.

Design #1 consists of a single-element transmit array angteldment nonsparse receive array and
thus requires a total of 17 elements. The remaining desityes gbove result in sparse transmit and/or
receive arrays. For example, the transmit and receivewedtinctions for Design #2 are given¥y

wrln) =41 1}, wgp]={ 01 01 0 1 0 1 0 1 0 1 0 I},

where0 in wg[n] indicates the absence of an element and requires a total efeh®ents. Figuré&9
shows the radiation patterns of the individual arrays aedwo-way radiation pattern of the composite
array. Note that the grating lobes in the radiation pattéth@receive array are being suppressed by the
radiation pattern of the transmit array.

Most economic sparse array design with eight elements &iredd with the Design #3, requiring a
total of eight elements. For example, the transmit and vecgperture functions for Design #3 are given
by:56

wrfll]={1 1 0 0 0 0 0 0 1 1}, wgpkl=4{ 0 1 0 1 0 I}

13.3 Linearly Tapered Effective Aperture Function

The shape of the effective aperture function can be madeth@iom reduce the grating lobes by control-
ling the shape of the transmit and receive aperture funstibor the design of a sparse array pair with a
linearly tapered effective aperture functi®ps s (z), one can choosé

Perr(z) = P1(2) P2(2), (147)
where

1 R-1 S—1
Pi(z) = % Yo P@@=)Y (148)
n=0 n=0

5735 K. Mitra, G. Jovanovic-Dolecek, and M.K. Tchobanou. Oa tlesign of one-dimensional sparse arrays with apodized end
elements. IrProc. 12th European Signal Processing Conferemages 2239-2242, Vienna, Austria, September 2004.
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Figure 70: lllustration of effective aperture smoothing by shapiransmit and receive aperture functions. The
radiation patterns have been scaled to make the value ofvthevay radiation pattern at = 0 unity.

The number of elements in the effective aperture functiothén N = R + S — 1. The number of
apodized elements in the beginning and at the end of thetieBeperture function isR — 1) each. The
values of the apodized elements @elz—e ey %. Moreover, the parametdrmust satisfy the condition
S > R — 1. For a sparse antenna pair design, the value of eRharS or both must be power-of-2.

We consider the design of a linearly tapered arrayce 3 and.S = 8, which results in an effective
aperture function given by

Werrn] =42 2 1 1 1 1 1 1 2 1}
A possible design for the transmit and receive arrays isgiye

wrrl={1 1 0 0 1 1},
wrl =43 3 3 5 3

The corresponding scaled radiation patterns are showrgur&ro(a).

13.4 Staircase Effective Aperture Function

Sparse antenna array pairs with a staircase effectiveuapdtinction also exhibit reduced grating lobes.
For designing such arrays, there are two possible formseofttor P (z) in Eq. (147) [Mit2004. One
form is for an even number of steps in the effective apertunetion, and the other form is for an odd
number of steps. We consider here the first form for which

Pi(2) = spgll+z7 80+ 2720+ 7R+ 4z 4 7R L))l (149)
The numberR of elements (including zero-valued ones) M(z) is given by R = 2Zf=1 ki + 1.
Moreover, for a staircase effective aperture function,rthenberS of elements inP,(z) of Eq. (147
must satisfy the conditioly > ZZle ki. The number of apodized elements in the beginning and at
the end of the effective aperture function2i§:f=1 k; each. The values of the apodized elements are

! 2 2L For a sparse antenna pair design, the valug wfust be a power-of-2.

20+1° 20+1° " 2041 g A
For example, consider the design of an array with= 1, k, = 2, andS = 8. Here

Pi(z) = é[l +z7 A4+ z22(04+ 2721+ z7 YY) = é[l +z V4273 4275 4279,
P2)=14z 4224234274425 42764277,
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The effective aperture function is then of the form
werrln] ={02 04 04 06 06 08 1 1 08 06 0.6 04 04 02}

One possible choice for the transmit and the receive apeftinctions is given by

I3

wrl={s 3 5 % 0 %
}

wrlp]={1 1 0 0 1 1}

W=

1
5

=

The corresponding scaled radiation patterns are showmgim&i70(b).

14 Programs

Program 1—Dual-Tone Multifrequency Tone Detection Using t he DFT

clf;

d = input(Type in the telephone digit = ’, 's’);

symbol = abs(d);

tm = [49 50 51 65;52 53 54 66;55 56 57 67;42 48 35 68];

for p = 1:4;
for g = 1:4;

if tm(p,q) == abs(d);break,end
end

if tm(p,q) == abs(d);break,end
end
fl = [697 770 852 941];
f2 = [1209 1336 1477 1633];
n = 0:204;
X = sin(2 *pi *nxfl(p)/8000) + sin(2 *pi * n* f2(q)/8000);
k = [18 20 22 24 31 34 38 42];
val = zeros(1,8);
for m = 1:8;

Fx(m) = goertzel(x,k(m)+1);
end

val = abs(Fx);
stem(k,val);grid; xlabel('k’);ylabel(|X[K]|");
limit = 80;
for s = 5:8;
if val(s) > limit,break,end
end
for r = 1:4;
if val(r) > limit,break,end
end
disp([Touch-Tone Symbol = ’,setstr(tm(r,s-4))])
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Program 2—Spectral Analysis of a Sum of Two Sinusoids Using t he DFT
clf;
N = input(’Signal length = ");
R = input(DFT length = "),
fr = input(Type in the sinusoid frequencies = );
n = 0:N-1;
X = 0.5 *sin(2 *pi *n=*fr(1)) + sin(2 *pi * n*fr(2));
Fx = fft(x,R);
k = O:R-1;

stem(k,abs(Fx));grid
xlabel(’k’); ylabel('Magnitude’);
title(’'N = ’,num2str(N),’, R = ",num2str(R)]);

Program 3—Spectrogram of a Speech Signal

load mtlb

n = 1:4001;

plot(n-1,mtlb);

xlabel('Time index n");ylabelAmplitude’);

pause

nfft = input(Type in the window length = ’);
ovlap = input('Type in the desired overlap = 7);
specgram(mtlb,nfft,7418,hamming(nfft),ovlap)

Program 4—Power Spectrum Estimation Using Welch’s Method

n = 0:1000;

g = 2*sin(0.12 =*pi *xn) + sin(0.28  *pi *n) + randn(size(n));
nfft = input(Type in the fft size = "),

window = hamming(256);

noverlap =input('Type in the amount of overlap = );

[Pxx, f]l = psd(g,nfft,2,window,noverlap);

plot(f/2,10 * log10(Pxx));grid

xlabel(\omega/\pi’);ylabel(Power Spectrum, dB’);

titte('Overlap = ’,;num2str(noverlap),” samples’]);

Program 5—Development of an AR Model of an FIR Filter

b = remez(13, [0 0.5 0.6 1], [1 1 O 0]);
[hw] = freqz(b,1,512);

[d.E] = Ipc(b,7);

[h1,w] = freqz(sqrt(E * length(b)),d,512);
plot(w/pi,abs(h),’-’,w/pi,abs(h1),--);
xlabel(\omega/\pi’);ylabel('Magnitude’);
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Program 6—Single Echo

%Delay Function

% y = singleecho(x, R, a);

%

% Parameters:

% x is the input audio signal

% R is the delay in number of samples
% a specifies the attenuation in the echo
%

% Return value:

% vy is the output signal

%

% Copyright 2004 Vincent Wan

% Credits: Vikas Sahdev, Rajesh Samudrala, Rajani Sadasiva
%

% Example:

% [x,fs,nbits] = wavread('dspOl.wav’);

% y = singleecho(x,8000,0.5);

% wavplay(y,fs);

function y = singleecho(x, R, a);
xlen=length(x); %Calc. the number of samples in the file

y=zeros(size(x));
% filter the signal

for i=1:1:R+1
y() = x();

end

for i=R+1:1:xlen
y()= x@)+ a  *x(i-R);
end;

Program 7—Multiple Echo

% y = multiecho(x,R,a,N);

%

% Generates multiple echos R samples apart with exponential
% Parameters:

% x is the input audio signal

% R is the delay in number of samples

% a specifies the attenuation in the echos

% N-1 is the total number of echos (If N = 0, an infinite number o

%

75

ly decaying amplitude

f echos is produced)
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% Return value:

% vy is the output signal

%

% Copyright 2004 Vincent Wan

% Credits: Vikas Sahdev, Rajesh Samudrala, Rajani Sadasiva
%

% Example:

% [x,fs,nbits] = wavread('dsp0l.wav’);

% y = multiecho(x,8000,0.5,3);

% wavplay(y,fs);

function y = multiecho(x,R,a,N);

if (N == 0)
num=[zeros(1,R),1];
den=[1,zeros(1,R-1),-a];

else
num=[1,zeros(1,N  *R-1),-a"N]J;
den=[1,zeros(1,R-1),-a];

end

y=filter(num,den,x);

Program 8—Allpass Reverberator

%Allpass reverberator

% y = alpas(x,R,a)

%

% Parameters:

% x is the input audio signal

% R is the delay in allpass structure

% a specifies the allpass filter coefficient
%

% Return value:

% vy is the output signal

%

% Copyright 2004 Vincent Wan

% Credits: Vikas Sahdev, Rajesh Samudrala, Rajani Sadasiva
%

% Example:

% [x,fs,nbits] = wavread('dsp01.wav’);

% y = alpas(x,8000,0.5);

% wavplay(y,fs);

function y = alpas(x,R,a)

num=[a,zeros(1,R-1),1];
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den=fliplr(num);

y=filter(hnum,den,x);

Program 9—Natural Sounding Reverberator

%A proposed natural sounding reverberator (The Schroeder® s Reverberator)
% y = reverb(x,R,a)

%

% Parameters:

% x is the input audio signal

% R is a 6-element vector describing the delays in allpass str ucture
% a is a 7-element vector describing multiplier values in the reverberator
%

% Return value:

% vy is the output signal

%

% Copyright 2004 Vincent Wan

% Credits: Vikas Sahdev, Rajesh Samudrala, Rajani Sadasiva m

%

% Example:

% a = [0.6 0.4 0.2 0.1 0.7 0.6 0.8];

% R = [700 900 600 400 450 390];

% [x,fs,nbits] = wavread('dspOl.wav’);

% y = reverb(x,R,a);

% wavplay(y,fs);

function y = reverb(x,R,a)

dl = multiecho(x, R(1), a(1), 0);
d2 = multiecho(x, R(2), a(2), 0);
d3 = multiecho(x, R(3), a(3), 0);

d4 = multiecho(x, R(4), a(4), 0);
d IR = dl + d2 + d3 + d4; %output of IIR echo generators

d_ALL1
d_ALL2

alpas(d_IIR, R(5), a(5));
alpas(d_ALL1, R(6), a(6));

y = x + a(7) *d_ALLZ;

14.1 Program 10—Flanger

% flang(x,R,a,omega,fs)

%

% Parameters:

% x is the input audio signal; R is the maximum delay value

% a specifies the attenuation in the echo, and can be set betwe en [-1,1]
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% omega is a low angular frequency over which the delay varies
% fs is the sampling frequency

%

% Return value: vy is the output signal

%

% Copyright 2004 Vincent Wan

% Credits: Vikas Sahdev, Rajesh Samudrala, Rajani Sadasiva m
%

% Example:

% [x,fs,nbits] = wavread('dsp01.wav’);

% vy = flang(x,1000,0.5,2 *pi *6,fs);

% wavplay(y,fs);

function y = flang(x,R,a,omega,fs)
y=zeros(size(x));

% filter the signal
max_length = length(x);
for i=1:max_length
delay = R/2 =*(1-cos(omega *i/fs));
delay_ceiling = ceil(delay);
y() = x();
if (delay <= (i - 1))
%Use linear interpolation
y(@i) = y()+a *( x(i-delay_ceiling) + (x(i-delay_ceiling+1) - x(i-delay
end
end

Program 11—Sigma-Delta Quantizer Operation

N = input('Type in the length of input sequence = ’);
n = 1:1:N;

m = n-1;

A = input(Type in the input amplitude = ");

x = Axones(1,N);

plot(m,x);

axis([0 N-1 -1.2 1.2));
xlabel("Time"); ylabel(Amplitude’);
title(Input analog signal’);

pause
y = zeros(1,N+1);
vO = 0;

for k = 2:1:N+1;
vl = x(k-1) - y(k-1) + vO;
y(k) = sign(vl);
vO = vl

end

sinusoidally

_ceiling))
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yn = y(2:N+1);

axis([0 N-1 -1.2 1.2]);

stem(m, yn);

xlabel('Time’); ylabel( Amplitude’);

title("Output of sigma-delta modulator’);

ave = sum(yn)/N;

disp('Average value of output is = );disp(ave);

Program 12—Sigma—Delta A/D Converter Operation
wo = 2xpi *0.01;

N = input('Type in the length of input sequence =
n = 1:1:N;
m = n-1;
A = input(Type in the amplitude of the input = °);

X = Axcos(wo *m);

axis([0 N-1 -1.2 1.2]);

plot(m,x);

xlabel('Time"); ylabel(Amplitude’);
title(Input analog signal’);

pause
y = zeros(1,N+1);
vO = 0;
for k = 2:1:N+1;
vl = x(k-1) - y(k-1) + vO;
if vi >= 0;
y(k) = 1;
else
y(k) = -1;
end
v0 = vi,;
end
yn = y(2:N+1);

axis([0 N-1 -1.2 1.2]);

stairs(m, yn);

xlabel('Time’); ylabel( Amplitude’);
title("Output of sigma-delta quantizer’);
Y = fft(yn);

pause

H =111 0.5 zeros(1,N-5) 0.5 1];
YF = Y.xH;

out = ifft(YF);

axis([0 N-1 -1.2 1.2]);

plot(m,out);

xlabel('Time"); ylabel(Amplitude’);
title(Lowpass filtered output’);

)
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