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F1 Continuous-Time and Discrete-Time

Signals

Q1.1 What is signum function? [Answer]

Q1.2 What is Dirac delta function? [Answer]

Q1.3 If a continuous-time signal is

xa(t) = A cos(Ω0t + φ)

and the corresponding discrete-time signal obtained by sampling xa(t)
at rate FT is

x[n] = A cos(ω0n + φ),

what is the relationship between the continuous-time angular frequency
Ω0 and normalized discrete-time angular frequency ω0 after sampling
process? [Answer]

Q1.4 What is the bandwidth of a continuous-time signal? [Answer]

Q1.5 What is the relation between the bandwidth of a continuous-time sig-
nal and the bandwidth of the corresponding discrete-time signal after
sampling process? [Answer]

Q1.6 For discrete-time sinusoidal signal x[n] = cos(ω0n+φ), why are frequen-
cies around ω0 = 2kπ usually called low frequencies,and frequencies
around ω0 = (2k + 1)π called high frequencies? [Answer]
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Q1.7 What is zero-padding? [Answer]

Q1.8 What is the difference between total energy and average power of a
continuous-time signal? [Answer]

Q1.9 What is the difference between total energy and average power of a
discrete-time signal? [Answer]

Q1.10 What is the folding frequency? [Answer]

Q1.11 What are Nyquist frequency, Nyquist rate and Nyquist band? [Answer]

Q1.12 If we sample the DTFT (discrete-time Fourier transform) of a sequence
{x[n]} at N equally spaced points in the ω-axis in the range 0 ≤ ω ≤ 2π
starting at ω = 0 and denote the N-point inverse DFT (discrete Fourier
transform) of these N frequency samples as {y[n]}, what is the relation
between {x[n]} and {y[n]}?
[Answer]

Q1.13 By computing the DTFT of a discrete-time signal g[n], we can analyze
the frequency spectrum:

G(ejω) =
∞∑

n=−∞

g[n]e−jωn.

If g[n] has infinite-length, we usually truncate g[n] by multiplying a
length-N window w[n] to make it into a finite-length sequence γ[n] =
g[n]·w[n]. Is the frequency spectrum of γ[n] different from the frequency
spectrum of g[n]? [Answer]

Q1.14 Does there exist any real function having the same waveform (regard-
less of vertical and horizontal scaling) as its continuous-time Fourier-
transform spectrum? [Answer]

Q1.15 Is convolution operation always associative for continuous-time signal?
[Answer]

Q1.16 Is convolution operation always associative for discrete-time signal?
[Answer]
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Q1.1 What is signum function?

Answer: The signum function f(x) outputs the sign of x:

sgn(x) =


1, x > 0
0, x = 0
−1, x < 0

.

[Back to FAQs list.]

Q1.2 What is Dirac delta function?

Answer: Dirac delta function δ(τ) is a function of τ with infinite
height, i.e., as 4 goes to 0, i.e.,∫ ∞

−∞
δ(τ) dτ = 1.

One useful property of the Dirac delta function is the sifting property:∫ ∞

−∞
x(τ)δ(t− τ) dτ = x(τ)|τ=t = x(t).

Please see Useful Functions of the review material in the CD.

[Back to FAQs list.]

Q1.3 If a continuous-time signal is

xa(t) = A cos(Ω0t + φ)

and the corresponding discrete-time signal obtained by sampling xa(t)
at rate FT is

x[n] = A cos(ω0n + φ),

what is the relationship between the continuous-time angular frequency
Ω0 and normalized discrete-time angular frequency ω0 after sampling
process?
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Answer: The ΩT = 2πFT denotes the sampling angular frequency, then

ω0 =
2πΩ0

ΩT

.

is the normalized digital angular frequency of x[n]. For example, if the
continuous-time signal xa(t) = cos(26πt) is sampled at a sampling rate
of 10Hz, then the normalized discrete-time angular frequency is

ω0 =
2π · 26π

2π · 10
= 2.6π.

Please see Section 2.3 in the text.

[Back to FAQs list.]

Q1.4 What is the bandwidth of a continuous-time signal?

Answer: Assume the continuous-time signal xa(t) is real and band-
limited to Ωm, i.e., the Continuous-Time Fourier Transform Xa(jΩ) =
0, |Ω| > Ωm. The bandwidth of xa(t) is Ωm − (−Ωm) = 2Ωm.

[Back to FAQs list.]

Q1.5 What is the relation between the bandwidth of a continuous-time sig-
nal and the bandwidth of the corresponding discrete-time signal after
sampling process?

Answer: Assume the continuous-time signal xa(t) is real and band-
limited to Ωm, i.e., the Continuous-Time Fourier Transform X(jΩ) = 0,
|Ω| > Ωm. Also assume the sampling period is T and no aliasing
occurs, then the corresponding discrete-time signal x[n] is band-limited
to ωm = ΩmT , and the bandwidth of x[n] is ωm − (−ωm) = 2ωm =
2ΩmT .

[Back to FAQs list.]
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Q1.6 For discrete-time sinusoidal signal x[n] = cos(ω0n + φ), why are fre-
quencies around ω0 = 2kπ usually called low frequencies,and frequen-
cies around ω0 = (2k + 1)π called high frequencies?

Answer: Observe Figure 2.16 in the book, we see that the frequency of
oscillation of the discrete-time sinusoidal sequence x[n] = cos(ω0n) in-
creases as ω0 increases from 0 to π, and then the frequency of oscillation
decreases as ω0 increases from π to 2π. Because a frequency ω0 +2kπ is
indistinguishable from a frequency ω0, and a frequency ω0 + (2k + 1)π
is indistinguishable from a frequency ω0 + π. Therefore, frequencies
in neighborhood of ω0 = 2kπ are usually called low frequencies, and
frequencies around ω0 = (2k + 1)π are called high frequencies.

[Back to FAQs list.]

Q1.7 What is zero-padding?

Answer: Zero-padding is to append zeros to the end of the discrete-
time signal x[n]. For example, if three zeros are padded to x[n], then
the new signal is {x[n], 0, 0, 0}.

[Back to FAQs list.]

Q1.8 What is the difference between total energy and average power of a
continuous-time signal?

Answer: The total energy of a continuous-time signal xa(t) is the square
integral over infinite time:

lim
T→∞

∫ T

−T

|x(t)|2 dt.

The average power of a continuous-time signal xa(t) is the total energy
divided by time:

lim
T→∞

1

2T

∫ T

−T

|x(t)|2 dt.
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The definition of total energy can explained as the area under the
squared signal |x(t)|2, and it is a measurement of the strength of the
signal x(t) over infinite time. However, there are signals with infinite
energy so we need to evaluate the average power of the signal x(t) as a
measurement of the strength over one unit time.

[Back to FAQs list.]

Q1.9 What is the difference between total energy and average power of a
discrete-time signal?

Answer: The total energy of a discrete-time signal x[n] is the square
summation over infinite time:

∞∑
n=−∞

|x[n]|2.

The average power of a discrete-time signal x[n] is the total energy
divided by time:

lim
K→∞

1

2K + 1

K∑
n=−K

|x[n]|2.

The definition of total energy can explained as the summation of the
squared signal |x[n]|2, and it is a measurement of the strength of the
signal x[n] over infinite time. However, there are signals with infinite
energy so we need to evaluate the average power of the signal x[n] as a
measurement of the strength over one unit time.

[Back to FAQs list.]

Q1.10 What is the folding frequency?

Answer: The definition of folding frequency is the same as the Nyquist
frequency, which is the maximum frequency Ωm of the band-limited
signal xa(t) with continuous-time Fourier transform Xa(jΩ) = 0, |Ω| >
Ωm.

[Back to FAQs list.]
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Q1.11 What are Nyquist frequency, Nyquist rate and Nyquist band?

Answer: If the continuous-time signal xa(t) is band-limited in the fre-
quency range −Ωm ≤ Ω ≤ Ωm, then the Nyquist rate is the minimum
sampling frequency ΩT = 2Ωm such that no aliasing occurs during the
sampling process. The Nyquist frequency, ΩT /2 = Ωm, equals one
half of the Nyquist rate. The Nyquist band is the frequency range of
−ΩT /2 ≤ Ω ≤ ΩT /2.

[Back to FAQs list.]

Q1.12 If we sample the DTFT (discrete-time Fourier transform) of a sequence
{x[n]} at N equally spaced points in the ω-axis in the range 0 ≤ ω ≤ 2π
starting at ω = 0 and denote the N-point inverse DFT (discrete Fourier
transform) of these N frequency samples as {y[n]}, what is the relation
between {x[n]} and {y[n]}?

Answer: Denote the discrete-time Fourier transform of a sequence
{x[n]} as X(ejω). If we sample X(ejω) at N equally spaced points
ωk = 2πk/N , 0 ≤ k ≤ N − 1, these N frequency samples can be
regarded as an N -point DFT Y [k] with the N -point inverse DFT a
length-N sequence {y[n]}, 0 ≤ n ≤ N − 1.

It can be shown that the relation between x[n] and y[n] is

y[n] =
∞∑

m=−∞

x[n + mN ], 0 ≤ n ≤ N − 1.

The above equation states that {y[n]} is the summation of infinite
shifted replicas of x[n]. Therefore, if {x[n]}, 0 ≤ n ≤ M − 1 is defined
to be a finite-length sequence of length M and M ≤ N , {x[n]} can be
fully recovered from {y[n]}. If M > N , the time-domain aliasing arises
in generating {y[n]} and we cannot recover {x[n]} from {y[n]}. Please
see Section 5.3 of the book.

[Back to FAQs list.]
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Q1.13 By computing the DTFT of a discrete-time signal g[n], we can analyze
the frequency spectrum:

G(ejω) =
∞∑

n=−∞

g[n]e−jωn.

If g[n] has infinite-length, we usually truncate g[n] by multiplying a
length-N window w[n] to make it into a finite-length sequence γ[n] =
g[n] · w[n]. Is the frequency spectrum of γ[n] different from the fre-
quency spectrum of g[n]?

Answer: Let ΨR(ejω) denote the DTFT of w[n]. The DTFT Γ(ejω) of
γ[n] is given by the frequency-domain convolution:

Γ(ejω) =
1

2π

∫ π

−π

G(ejϕ)ΨR(ej(ω−ϕ)) dϕ.

Because the frequency spectrum ΨR(ejω) consists of the main lobe and
many sidelobes, the DTFT Γ(ejω) of γ[n] is different from the DTFT
G(ejω) of g[n] in two aspects: (1) the main lobe width of the win-
dow frequency spectrum ΨR(ejω) determines the frequency resolution
of Γ(ejω), (2) the relative sidelobe level of ΨR(ejω) controls the leakage
phenomenon, which is the spread of energy in frequency-domain from
one single frequency to its neighborhood. The frequency resolution
can be improved by increasing the window length, and the leakage
phenomenon can be reduced by a proper choice of window (e.g., Rect-
angular, Hann, Hamming, Blackman). Please see Section 10.2 and
Section 15.2 of the book.

[Back to FAQs list.]

8



Q1.14 Does there exist any real function having the same waveform (regard-
less of vertical and horizontal scaling) as its continuous-time Fourier-
transform spectrum?

Answer: Gaussian function

h(t) =
1

σ
√

2π
e−(t−µ)2/2σ2

.

Note that convolving the square pulse function

x(t) =

{
+1 , |t| ≤ 1/2
−1 , 1/2 < |t|

with itself for infinite times will converge to the Gaussian function.

[Back to FAQs list.]

Q1.15 Is convolution operation always associative for continuous-time signal?

Answer: No. It is associative only for stable and single-sided continuous-
time signals. For example, if

x1(t) = A, x2(t) = u(t), x3(t) = δ(t)− δ(t− 1),

then x1(t) ~ (x3(t) ~ x2(t)) 6= (x1(t) ~ x3(t)) ~ x2(t).

[Back to FAQs list.]

Q1.16 Is convolution operation always associative for discrete-time signal?

Answer: No. It is associative only for stable and single-sided discrete-
time signals. For example, if

x1[n] = A, x2[n] = u[n], x3[n] = δ[n]− δ[n− 1],

then x1[n] ~ (x3[n] ~ x2[n]) 6= (x1[n] ~ x3[n]) ~ x2[n].

[Back to FAQs list.]
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F2 Discrete-Time Systems

Q2.1 What is a linear time-invariant (LTI) system? How can the LTI prop-
erty help us to analyze the system? [Answer]

Q2.2 What is the property of a zero-phase transfer function? Can a causal
transfer function have zero-phase? [Answer]

Q2.3 How can we convert a zero-phase FIR transfer function to a causal FIR
transfer function with identical magnitude responses? [Answer]

Q2.4 What are the properties of a minimum-phase transfer function?
[Answer]

Q2.5 What is the difference between the phase delay and the group delay of
an LTI discrete-time system? [Answer]

Q2.6 How does the group-delay of a discrete-time system affect a discrete-
time signal composed of multiple sinusoids of different frequencies?
[Answer]

Q2.7 What’s the sufficient condition of the system

N∑
k=0

dky[n− k] =
M∑

k=0

pkx[n− k]

to be linear ? [Answer]

Q2.8 What is the impulse invariance method of IIR digital filter design?
[Answer]

Q2.9 What is the frequency sampling method of FIR digital filter design?
[Answer]

Q2.10 What is the least-mean-square error method of FIR digital filter design?
[Answer]

Q2.11 What is the constrained least-square method of FIR digital filter de-
sign? [Answer]

Q2.12 What is the generalized multilevel FIR digital filter design? [Answer]
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Q2.1 What is a linear time-invariant (LTI) system? How can the LTI prop-
erty help us to analyze the system?

Answer: The LTI system is a system satisfying both the linear and
time-invariant(or shift-invariant in the discrete case) properties. This
enables us to analyze the system output by the convolution operation:

y[n] = x[n] ~ h[n],

where h[n] is the impulse response of the system and x[n] is the input.
Please see Section 2.5 in the book.

[Back to FAQs list.]

Q2.2 What is the property of a zero-phase transfer function? Can a causal
transfer function have zero-phase?

Answer: A zero-phase transfer function F (ejω) has a real and non-
negative frequency response. For a length-N causal digital filter with
impulse response

f [n], 0 ≤ n ≤ N − 1,

it is impossible for the DTFT

F (ejω) =
N−1∑
n=0

f [n]e−jωn

to be real and nonnegative unless f [n] is a delta function with nonneg-
ative magnitude. Please see Section 7.2 in the book.

[Back to FAQs list.]
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Q2.3 How can we convert a zero-phase FIR transfer function to a causal FIR
transfer function with identical magnitude responses?

Answer: A zero-phase FIR transfer function is of the form

F (z) = a0 +
a1

2
(z + z−1) +

a2

2
(z2 + z−2) + · · ·+ aM

2
(zM + z−M),

with a0, a1,..., aM real numbers. Its frequency response is of the form

F (ejω) = a0 +
a1

2
(ejω + e−jω) +

a2

2
(ej2ω + e−j2ω) + · · ·+ aM

2
(ejMω + e−jMω)

= a0 + a1 cos(ω) + a2 cos(2ω) + · · ·+ aM cos(Mω).

A causal transfer function G(z) with the same magnitude response as
that of H(z) is given by

G(z) =z−MF (z) =
aM

2
+

aM−1

2
z−1 + · · ·+ a1

2
z−(M−1) + a0z

−M

+
a1

2
z−(M+1) + · · ·+ aM−1

2
z−(2M−1) +

aM

2
z−2M .

[Back to FAQs list.]

Q2.4 What are the properties of a minimum-phase transfer function?

Answer: A causal stable transfer function with all zeros inside the unit
circle is called a minimum-phase transfer function. The properties of
a minimum-phase transfer function are (1) minimum group delay, and
(2) maximum energy compactness. Please see Section 7.2 in the book.

[Back to FAQs list.]
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Q2.5 What is the difference between the phase delay and the group delay of
an LTI discrete-time system?

Answer: If the input to an LTI system H(ejω) is a sinusoidal signal
with frequency ω0

x[n] = A cos(ω0n + φ),

then the output is the input multiplied by |H(ejω)| and delayed by
θ(ω0) in phase

y[n] = A|H(ejω)| cos
(
ω0

(
n +

θ(ω0)

ω0

)
+ φ

)
= A|H(ejω)| cos(ω0(n− τp(ω0)) + φ),

where τp(ω0) = − θ(ω0)
ω0

is called the phase delay. However, if the input
signal has many sinusoidal components with different frequencies and
all of them are not harmonically related, then each sinusoidal frequency
component will have different phase delay. Therefore, the group delay
given by

τg(ω) = −dθ(ω)

dω

is used to indicate the time delay between the continuous-time under-
lying waveforms of input signal and output signal. Please see Section
3.9 of the book.

[Back to FAQs list.]
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Q2.6 What is the effect of non-constant group delay?

Answer: The group delay is a measure of the linearity of the phase func-
tion as a function of the frequency and is the time delay between wave-
forms of underlying continuous-time signals whose sampled versions,
sampled at t = nT , are precisely the input and the output discrete-
time signals. The waveform of the underlying continuous-time output
signal shows distortion when the group delay of the LTI system is not
constant over the bandwidth of the input signal. We show two exam-
ples in the following.
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Figure F2.1: Allpass transfer function.
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Figure F2.2: Input/output spectrum.
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Figure F2.3: Input/output signal.
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Figure F2.4: FIR LPF transfer function.
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Figure F2.5: Input/output spectrum.
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Figure F2.6: Input/output signal.

In Figure F2.1-F2.3, we show an example of non-constant group delay.
Figure F2.1 shows the spectrum of an allpass filter with group delay ap-
proximately equal 100 samples at the frequency ω = 0.75π. Figure F2.2
shows an input signal consisting of two sinusoidal pulses of frequencies
ω = 0.25π and ω = 0.75π. Figure F2.3 shows that the high-frequency
pulse starts at sample = 0 and the low-frequency pulse starts at sample
= 50. After the allpass filter the ω = 0.25π pulse remains at the same
sample location as input, while the ω = 0.75π pulse is delayed by 100
samples at output.

Figure F2.4-F2.6 show an example of constant group delay. Figure
F2.4 is the designed linear-phase FIR lowpass filter with group delay of
19.5 samples. Figure F2.5 gives input and out spectrums. Figure F2.6
shows that both ω = 0.25π pulse and ω = 0.75π pulse are delayed by
the same amount of 19.5 samples.

[Back to FAQs list.]
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Q2.7 What’s the sufficient condition of the system

N∑
k=0

dky[n− k] =
M∑

k=0

pkx[n− k]

to be linear ?

Answer: Zero initial conditions, i.e., y[−1] = y[−2] = · · · = y[−N ] = 0.
Please refer to Problem 2.67 in the book.

[Back to FAQs list.]
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Q2.8 What is the impulse invariance method of IIR digital filter design?

Answer: The basic idea behind the impulse invariance method is to
develop a causal stable IIR transfer function G(z) whose impulse re-
sponse g[n] is exactly identical to the uniformly sampled version of
the impulse response ha(t) of a prototype causal stable analog transfer
function Ha(s); that is,

g[n] = ha(nT ), n = 0, 1, 2, ..., ∞ (F2.1)

where T is the sampling period. It can be shown that the relation
between the transfer function G(z) and Ha(s) is given by

G(z) = Z{g[n]} = Z{ha(nT )}

=
1

T

∞∑
k=−∞

Ha(s + j
2πk

T
)
∣∣
s= 1

T
ln z

. (F2.2)

The corresponding relation between the frequency response G(ejω) of
the digital transfer function and the frequency response Ha(jΩ) is given
by

G(ejω) =
1

T

∞∑
k=−∞

Ha(j
ω

T
+ j

2πk

T
). (F2.3)

It follows from the above expression that the frequency response of the
desired digital transfer function is given by the sum of the frequency
responses of the original analog transfer function and its frequency
shifted versions, shifted by ±2πk/T , with the overall sum scaled by
the factor 1/T . As a result, if the analog frequency response Ha(jΩ) is
bandlimited with

Ha(jΩ) for |Ω| ≥ π

T
, (F2.4)

then

G(ejω) =
1

T
Ha(j

ω

T
) for 0 ≤ |ω| < π, (F2.5)

and there is no aliasing. If the above condition (F2.5) does not hold,
then there will be aliasing.

[Back to FAQs list.]
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Q2.9 What is the frequency sampling method of FIR digital filter design?

Answer: In this approach, the specified frequency response Hd(e
jω)

is first uniformly sampled at N equally spaced points ωk = 2πk/N ,
k = 0, 1, ..., N − 1, providing N frequency samples. These N
frequency samples constitute an N -point DFT H[k] whose N -point
inverse-DFT thus yields the impulse response coefficients h[n] of the
FIR filter of length N . The basic assumption here is that the specified
frequency response is uniquely characterized by the N frequency sam-
ples and, hence, can be fully recovered from these samples.

Now, Hd(e
jω) is a periodic function of ω with a Fourier series represen-

tation given by

Hd(e
jω) =

∞∑
k=−∞

hd[n]e−jωn. (F2.6)

Its Fourier coefficients hd[n] are thus given by

hd[n] =
1

2π

∫ π

−π

Hd(e
jω)ejωn dω. (F2.7)

It is instructive to develop the relation between hd[n] and h[n].

From Eq.(F2.6),

H[k] = Hd(e
jωk) = Hd(e

j(2πk/N)) =
∞∑

l=−∞

hd[`]W
k`
N , (F2.8)

where WN = e−j(2π/N). An inverse-DFT of H[k] yields

h[n] =
1

N

N−1∑
k=0

H[k]W−kn
N . (F2.9)

Substituting Eq.(F2.8) in Eq.(F2.9), we get

h[n] =
1

N

N−1∑
k=0

∞∑
`=−∞

hd[`]W
k`
N W−kn

N

=
∞∑

`=−∞

hd[`]
[ 1

N

N−1∑
k=0

W
−k(n−`)
N

]
. (F2.10)
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Making use of the identity

1

N

N−1∑
k=0

W
−k(n−r)
N =

{
1, for r = n + mN,
0, otherwise.

(F2.11)

in Eq.(F2.10), we finally arrive at the desired relation

h[n] =
∞∑

m=−∞

hd(n + mN), 0 ≤ n ≤ N − 1. (F2.12)

The above relation indicates that h[n] is obtained from hd[n] by adding
an infinite number of shifted replicas of hd[n] to hd[n], with each replica
shifted by an integer multiple of N sampling instants, and observing
the sum only for the interval 0 ≤ n ≤ N − 1. Thus, if hd[n] is a finite-
length sequence of length of less than or equal to N , then h[n] = hd[n]
for 0 ≤ n ≤ N−1, otherwise there is a time-domain aliasing of samples
with h[n] bearing no resemblance to hd[n].

It can be shown that the transfer function of the desired FIR filter is
given by

H(z) =
1− z−N

N

N−1∑
k=0

H[k]

1−W−k
N z−1

. (F2.13)

On the unit circle, Eq.(F2.13) reduces to

H(ejω) =
e−jω[(N−1)/2]

N

N−1∑
k=0

H[k]
sin(ωN−2πk

2
)

sin(ωN−2πk
2N

)
ejπk[(N−1)/N ]. (F2.14)

It can be shown that

H(ejω)
∣∣
ω=2πk/N

= H[k], k = 0, 1, ..., N − 1. (F2.15)

That is, the FIR filter designed via the frequency sampling approach
has exactly the specified frequency samples H[k] = Hd(e

ejω
), where

ωk = 2πk/N , k = 0, 1, ... N − 1, whether or not the length of hd[n] is
less than or equal to N .

In general, the mininum stopband attenuation of the desired FIR filter
is much smaller than the desired value. The reason behind the overall
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unsatisfactory magnitude response is that the impulse response hd[n]
corresponding to the ideal filter is of infinite length, and as a result
of the relation of Eq.(F2.12), there is a severe time-domain aliasing in
determining the impulse response coefficients of the FIR filter h[n].

[Back to FAQs list.]
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Q2.10 What is the least-mean-square error method of FIR digital filter design?

Answer: For the design of a linear-phase FIR filter with a minimum
mean-square error criterion, the error measure is

ε =
K∑

i=1

{
W (ωi)

[
H̆(ωi)−D(ωi)

]}2

, (F2.16)

where H̆(ω) is the amplitude response of the designed filter, D(ω) is the
desired amplitude response, and W (ω) is the weighting function. Since
the amplitude response for all four types of linear-phase FIR filters can
be expressed in the form

H̆(ω) = Q(ω)
L∑

k=0

ã[k] cos(ωk), (F2.17)

where Q(ω), ã[k], and L are given in Section 10.3 of the book. Hence,
the mean-square error of Eq. (F2.16) is a function of the filter param-
eters ã[k]. To arrive at the minimum value of ε, we set

∂ε

∂ã[k]
= 0, 0 ≤ k ≤ L,

which results in a set of (L + 1) linear equations that can be solved for
ã[k].

Without any loss of generality, we consider here the design of a Type 1
linear-phase FIR filter. In this case, Q(ω) = 1, ã[k] = a[k], and L = M.
The expression for the mean-square error then takes the form

ε =
K∑

i=1

{
W (ωi)

[
M∑

k=0

a[k] cos(ωik)−D(ωi)

]}2

=
K∑

i=1

{
M∑

k=0

W (ωi)a[k] cos(ωik)−W (ωi)D(ωi)

}2

. (F2.18)

Using the notation,

H =


W (ω1) W (ω1) cos(ω1) · · · W (ω1) cos(Mω1)
W (ω2) W (ω2) cos(ω2) · · · W (ω2) cos(Mω2)

...
...

. . .
...

W (ωK) W (ωK) cos(ωK) · · · W (ωK) cos(MωK)

 ,
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a =
[
a[0] a[1] · · · a[M ]

]T
,

and
d = [W (ω1)D(ω1) W (ω2)D(ω2) · · · W (ωK)D(ωK)]T ,

we can express Eq. (F2.18) in the form

ε = eTe,

where
e = Ha− d.

The minimum mean-square solution is then obtained by solving the
normal equations [Par87]:

HTHa = HTd.

If K ≥ M , which is typically the case, the above equation should be
solved using an iterative method such as the Levinson-Durbin algo-
rithm [Lev47], [Dur59], as the direct solution is often ill-conditioned.
A similar formulation can be carried out for the other three types of
linear-phase FIR filters. Note that the design approach outlined here
can be used to design a linear-phase FIR filter meeting any arbitrarily
shaped desired response.

[Back to FAQs list.]
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Q2.11 What is the constrained least-square method of FIR digital filter de-
sign?

Answer: FIR filters with constraints on their frequency response can
be designed using the least-mean-squares approach by incorporating
the constraints into the design algorithm. To illustrate this approach,
assume, without any loss of generality, that the filter to be designed is
a Type 1 linear-phase FIR filter of order N = 2M with an amplitude
response given by Eq. (10.62) in the book and constrained to have a
null at ωo. This can be written as a single equality constraint Ga = d,
where

G = [1, cos(ωo), cos(2ωo), · · · , cos(Mωo)],

a = [a[0], a[1], · · · , a[M ]]T

d = [0]. (F2.19)

In the general case, if there are r constraints, then G is an r× (M +1)
matrix and d is an r × 1 column vector. Such a filter can be designed
by using the constrained least-square method. This method minimizes
the square error

ε =

(
1

π

∫ π

0

W (ω)[H̆(ω)−D(ω)]2 dω

)1/2

, (F2.20)

subject to the side constraints

Ga = d. (F2.21)

As before, D(ω) is the desired amplitude response and W (ω) is the
weighting function. The side constraints of Eq. (F2.21) need not be
linear, but the solution is more easily obtained if they are.

To minimize ε2 subject to the constraints, we first form the Lagrangian:

Φ = ε2 + µT · [Ga− d], (F2.22)

where
µ = [µ1, µ2, . . . , µr]

T

is the vector of the so-called Lagrange multipliers. We can derive the
necessary conditions for the minimization of ε2 by setting the deriva-
tives of Φ with respect to the filter parameters a[k] and the Lagrange
multipliers µi to zero resulting in the following equations:
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Ra + GT µ = c,

Ga = d, (F2.23)

where the coefficients of the vector c = [c[0], c[1], . . . , c[M ]] are given
by

c[0] =
1

π

∫ π

0

W (ω)D(ω) dω,

c[k] =
1

π

∫ π

0

W (ω)D(ω) cos(kω) dω, 1 ≤ k ≤ M,

and the (i, k)th element Ri,k of the matrix R is given by

Ri,k =

∫ π

0

W (ω) cos(iω) cos(kω) dω.

Ra + GT µ = c,

Ga = d, (F2.24)

where the coefficients of the vector c = [c[0], c[1], . . . , c[M ]] are given
by

c[0] =
1

π

∫ π

0

W (ω)D(ω) dω,

c[k] =
1

π

∫ π

0

W (ω)D(ω) cos(kω) dω, 1 ≤ k ≤ M,

and the (i, k)th element Ri,k of the matrix R is given by

Ri,k =

∫ π

0

W (ω) cos(iω) cos(kω) dω.

The two matrix equations of Eq. (F2.24) can be written as[
R GT

G 0

] [
a
µ

]
=

[
c
d

]
. (F2.25)
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Solving the above equation we get

µ = (GR−1GT )−1(GR−1c− d),

a = R−1(c−GT µ). (F2.26)

When the integrals needed to form R and c cannot be calculated simply,
then R and c can be approximated using the discrete forms

R ∼= HTH, c ∼= HTd.

In the special case when the error function is not weighted, i.e., W (ω) =
1, R becomes an identity matrix, and the ci are simply the coefficients
of the Fourier series expansion of D(ω). As a result, Eq. (F2.26) reduces
to

µ = (GGT )−1(Gc− d),

a = c−GT µ.

One useful application of the constrained least-square approach is the
design of filters by a criterion that takes into account both the square
error and the peak-ripple error (or Chebyshev error). The constrained
least-square approach to filter design allows a compromise between the
square error and the Chebyshev criteria, and produces the filter with
least-square error and the best Chebyshev error filter as special cases.

The constrained least-square filter design method can be used to de-
sign both linear-phase and minimum-phase FIR filters without speci-
fying explicitly the transition bands [Sel96]. It minimizes the weighted
integral-square error of Eq. (F2.20) over the whole frequency range such
that the local minima and maxima of H̆(ω) remain within the specified
lower and upper bound functions L(ω) and U(ω). As ε defined above
is simply the L2 norm of the error function [H̆(ω)−D(ω)], it has also
been referred to as the L2 error. For lowpass filter design with a cutoff
frequency ωo, the functions L(ω) and U(ω) are defined by

L(ω) = 1− δp, U(ω) = 1 + δp, for 0 ≤ ω ≤ ωo,

L(ω) = −δs, U(ω) = δs, for ωo ≤ ω ≤ π. (F2.27)

Because this design problem has inequality constraints, an iterative
algorithm is employed to minimize the error ε of Eq. (F2.20) subject to
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the constraints on the values of H̆(ωi), where the frequency points ωi

are contained in a constraint set S = {ω1, ω2, . . . , ωm} with ωi ∈ [0, π].
Let the set S be partitioned into two sets, the set S` containing the
frequency points ωi, 1 ≤ i ≤ q, where the equality constraint

H̆(ω) = L(ω)

is imposed, and the set Su containing the frequency points ωi, q + 1 ≤
i ≤ m, where the equality constraint

H̆(ω) = U(ω)

is imposed. Then the equality constrained problem is solved on each
iteration.

When the Lagrange multipliers are all nonnegative, Kuhn-Tucker con-
ditions [Fle87] state that the solution of the equality constrained prob-
lem minimizes ε of Eq. (F2.20) while satisfying the inequality con-
straints:

H̆(ωi) ≥ L(ωi), 1 ≤ i ≤ q,

H̆(ωi) ≤ U(ωi), q + 1 ≤ i ≤ m.

The constrained least-square design algorithm therefore consists of the
following steps:

Step 1: Initialization. Choose the constraint set to be an empty set,
i.e., S = ∅.

Step 2: Minimization with Equality Constraints. Solve Eq. (F2.26)
for the Lagrange multipliers by minimizing the mean-square error
ε of Eq. (F2.20) satisfying the equality constraints H̆(ωi) = L(ωi)
for ωi ∈ S` and H̆(ωi) = U(ωi) for ωi ∈ Su.

Step 3: Kuhn-Tucker Conditions. If a Lagrange multiplier µj is
negative, then remove the corresponding frequency ωj from the
constrained set S, and return to Step 2. Otherwise, calculate the
coefficients a[k] using Eq. (F2.26) and proceed to Step 4.

Step 4: Multiple Exchange of Constraint Set. Set the constraint
set S equal to S` ∪ Su. Note that at the frequency points ωi

in S`, ∂H̆(ω)/∂ω|ω=ωi
= 0 and H̆(ωi) ≤ L(ωi). Likewise, at the

frequency points ωi in Su, ∂H̆(ω)/∂ω|ω=ωi
= 0 and H̆(ωi) ≥ U(ωi).
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Step 5: Convergence Check. The algorithm converges if H̆(ω) ≥
L(ω) − ∆ for all ωi in S`, and if H̆(ω) ≤ U(ω) + ∆ for all ωi in
Su. Otherwise, go back to Step 2.

In Step 5, ∆ is a very small number, typically 10−6, chosen a priori
based on the desired numerical accuracy. For an additional discussion
on the algorithm and its properties, see [Sel96], [Sel98].

[Back to FAQs list.]
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Q2.12 What is the generalized multilevel FIR digital filter design?

Answer: A generalization of the multilevel L-band FIR digital filter of
Figure 10.1 in the book is obtained by making the constant magnitude
levels in each a linear function of ω resulting a frequency response given
by [Cha95]

HML(ejω) = m`ω + d`, ω`−1 < ω < ω`, 1 ≤ ` ≤ L,

where

m` =
A−` − A+

`−1

ω` − ω`−1

is the slope of the `th segment, and

d` =
ω`A

+
`−1 − ω−`−1

ω` − ω`−1

is the intercept of the `th segment. It can be shown that the impulse
response of the generalized multilevel FIR digital filter is given by

hML[n] =
2

n2π

L∑
`=1

m` sin
ω`−1 + ω`

2
· sin (ω`−1 − ω`)n

2

1

nπ

L−1∑
`=1

(A−` − A+
`−1) sin ω`n, n ≤ 0, (F2.28)

hML[n] =
1

2π

L∑
`=1

(A−` − A+
ell+1)(ω` − ω`−1), (F2.29)

assuming A−` = 0.

[Back to FAQs list.]
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F3 Numbers and Polynomials

Q3.1 What is a prime number? [Answer]

Q3.2 When are two integers relatively prime? [Answer]

Q3.3 What is the greatest common divisor (gcd) of two positive integers?
[Answer]

Q3.4 How can we find the greatest common divisor of two positive integers?
[Answer]

Q3.5 What is the greatest common divisor of two polynomials? [Answer]

Q3.6 How can we find the greatest common divisor of two polynomials?
[Answer]

Q3.7 What is the modulo operation of two integers? [Answer]

Q3.8 What is the multiplicative inverse of a integer? [Answer]

Q3.9 What is the modulo operation of two polynomials? [Answer]

31



Q3.1 What is a prime number?

Answer: Prime numbers are numbers that have only improper divisors.
For example, 17 is only divisible by 1 and 17, 3 only by 1 and 3. The
number 1 is not counted among the prime numbers so that the sequence
is {2, 3, 5, 7, 11, 13, 17, 19, ...}.
[Back to FAQs list.]

Q3.2 When are two integers relatively prime?

Answer: If two integers a and b have no common divisor (except 1),
then a and b are called coprime or relatively prime.

[Back to FAQs list.]

Q3.3 What is the greatest common divisor (GCD) of two positive integers?

Answer: If a and b are any two integers, then the greatest common
divisor is the largest divisor common to both a and b. For example,
360 = 23 · 32 · 5 and 96 = 25 · 3 so the greatest common divisor of 96
and 360 is 23 ·3 = 24. We usually use the notation gcd(A, B) to denote
the GCD of the numbers A and B.

[Back to FAQs list.]

Q3.4 How can we find the greatest common divisor of two positive integers?

Answer: The GCD of two positive numbers can be determined by using
the Euclid’s algorithm. We illustrate this method by determining the
GCD of 3145 and 2992. First, we divide the larger number(3145) by
the smaller number(2992) and get the remainder(153):

3145 = 2992 · 1 + 153.

Next, we divide the smaller number(2992) by the remainder above(153)
and get the remainder(85):

2992 = 153 · 19 + 85.
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Then divide the divisor above(153) by the remainder above(85) and get
the remainder(68):

153 = 85 · 1 + 68.

Repeat this recurrence process till the final remainder is 0:

85 = 68 · 1 + 17,

68 = 17 · 4 + 0.

The GCD of 3145 and 2992 is the last nonzero remainder 17.

[Back to FAQs list.]

Q3.5 What is the greatest common divisor of two polynomials?

Answer: The greatest common divisor of two polynomials is the unique
common divisor of the highest degree. For example,

a(z) = 4z−3 + 8z−2 + 5z−1 + 3 = (1 + z−1 + 2z−2)(3 + 2z−1),

b(z) = 2z−2 + 11z−1 + 12 = (4 + z−1)(3 + 2z−1),

so the greatest common divisor is 3 + 2z−1.

[Back to FAQs list.]

Q3.6 How can we find the greatest common divisor of two polynomials?

Answer: The greatest common divisor of two polynomials can be found
by continued fraction expansion. For example,

a(z)

b(z)
=

4z−3 + 8z−2 + 5z−1 + 3

2z−2 + 11z−1 + 12
,

= 2z−1 − 7 + 29
2z−1 + 3

2z−2 + 11z−1 + 12
,

= 2z−1 − 7 + 29
1

(2z−2 + 11z−1 + 12)/(2z−1 + 3)
,

= 2z−1 − 7 + 29
1

z−1 + 4
,

so the greatest common divisor is 2z−1 + 3.

[Back to FAQs list.]
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Q3.7 What is the modulo operation of two integers?

Answer: The modulo operation of integer X over integer N is the
residue of X divided by N and is denoted as 〈X〉N . When nega-
tive numbers are used, 〈X〉N has the same sign as N . For example,
〈67〉13 = 67 − 5 · 13 = 2, 〈67〉−13 = 67 − (−13) · (−6) = −11 and
〈−67〉13 = −67− 13 · (−6) = 11.

[Back to FAQs list.]

Q3.8 What is the multiplicative inverse of a integer?

Answer: The notation
〈X−1〉N

denotes the multiplicative inverse of X evaluated modulo N .
If 〈X−1〉N = α, then 〈Xα〉N = 1. For example, 〈3−1〉4 = 3 because
〈3 · 3〉4 = 1, and 〈8−1〉5 = 2 because 〈8 · 2〉5 = 1.

[Back to FAQs list.]

Q3.9 What is the modulo operation of two polynomials?

Answer: In the case of polynomial, the operation a(z) mod b(z) is the
residue r(z) after the polynomial division a(z)/b(z). For example, if
a(z) = 4z−3 + 2z−2 + 5z−1 + 1 and b(z) = z−2 + 3z−1 + 4 then the
residue after the division

a(z)

b(z)
= 4z−1 − 10 +

19z−1 + 41

z−2 + 3z−1 + 4

is 19z−1 + 41. Therefore, a(z) mod b(z) = r(z) = 19z−1 + 41.

[Back to FAQs list.]
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