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Applications of Digital Signal
Processing

As mentioned in Chapter 1 of Text, digital signal processingtechniques are increasingly replacing con-
ventional analog signal processing methods in many fields, such as speech analysis and processing, radar
and sonar signal processing, biomedical signal analysis and processing, telecommunications, and geo-
physical signal processing. In this chapter, we include a few simple applications to provide a glimpse of
the potential of DSP.

We first describe several applications of the discrete Fourier transform (DFT) introduced in Sec-
tion 5.2. The first application considered is the detection of the frequencies of a pair of sinusoidal signals,
called tones, employed in telephone signaling. Next, we discuss the use of the DFT in the determination
of the spectral contents of a continuous-time signal. The effect of the DFT length and the windowing
of the sequence are examined in detail here. In the followingsection, we discuss its application of the
short-time Fourier transform (STFT) introduced in Section5.11 of Text for the spectral analysis of non-
stationary signals. We then consider the spectral analysisof random signals using both nonparametric and
parametric methods. Application of digital filtering methods to musical sound processing is considered
next, and a variety of practical digital filter structures useful for the generation of certain audio effects,
such as artificial reverberation, flanging, phasing, filtering, and equalization, are introduced. Generation
of discrete-time analytic signals by means of a discrete-time Hilbert transformer is then considered, and
several methods of designing these circuits are outlined along with an application. The basic concepts
of signal compression are reviewed next, along with a technique for image compression based on Haar
wavelets. The theory and design of transmultiplexers are discussed in the following section. One method
of digital data transmission employing digital signal processing methods is then introduced. The basic
concepts behind the design of the oversampling A/D and D/A converters are reviewed in the following
two sections. Finally, we review the sparse antenna array design for ultrasound scanners.

1 Dual-Tone Multifrequency Signal Detection

Dual-tone multifrequency (DTMF) signaling, increasinglybeing employed worldwide with push-button
telephone sets, offers a high dialing speed over the dial-pulse signaling used in conventional rotary tele-
phone sets. In recent years, DTMF signaling has also found applications requiring interactive control,
such as in voice mail, electronic mail (e-mail), telephone banking, and ATM machines.

A DTMF signal consists of a sum of two tones, with frequenciestaken from two mutually exclusive
groups of preassigned frequencies. Each pair of such tones represents a unique number or a symbol.
Decoding of a DTMF signal thus involves identifying the two tones in that signal and determining their
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2 1: Applications of Digital Signal Processing

corresponding number or symbol. The frequencies allocatedto the various digits and symbols of a push-
button keypad are internationally accepted standards and are shown in Figure 1.35 of Text.1 The four keys
in the last column of the keypad, as shown in this figure, are not yet available on standard handsets and
are reserved for future use. Since the signaling frequencies are all located in the frequency band used for
speech transmission, this is anin-band system. Interfacing with the analog input and output devices is
provided bycodec(coder/decoder) chips or A/D and D/A converters.

Although a number of chips with analog circuitry are available for the generation and decoding of
DTMF signals in a single channel, these functions can also beimplemented digitally on DSP chips. Such
a digital implementation surpasses analog equivalents in performance, since it provides better precision,
stability, versatility, and reprogrammability to meet other tone standards and the scope for multichannel
operation by time-sharing, leading to a lower chip count.

The digital implementation of a DTMF signal involves addingtwo finite-length digital sinusoidal
sequences, with the latter simply generated by using look-up tables or by computing a polynomial expan-
sion. The digital tone detection can be easily performed by computing the DFT of the DTMF signal and
then measuring the energy present at the eight DTMF frequencies. The minimum duration of a DTMF
signal is 40 ms. Thus, with a sampling rate of 8 kHz, there are at most0:04 � 8000 D 320 samples
available for decoding each DTMF digit. The actual number ofsamples used for the DFT computation
is less than this number and is chosen so as to minimize the difference between the actual location of the
sinusoid and the nearest integer value DFT indexk.

The DTMF decoder computes the DFT samples closest in frequency to the eight DTMF fundamental
tones and their respective second harmonics. In addition, apractical DTMF decoder also computes the
DFT samples closest in frequency to the second harmonics corresponding to each of the fundamental tone
frequencies. This latter computation is employed to distinguish between human voices and the pure sinu-
soids generated by the DTMF signal. In general, the spectrumof a human voice contains components at
all frequencies including the second harmonic frequencies. On the other hand, the DTMF signal generated
by the handset has negligible second harmonics. The DFT computation scheme employed is a slightly
modified version of Goertzel’s algorithm, as described in Section 11.3.1 of Text, for the computation of
the squared magnitudes of the DFT samples that are needed forthe energy computation.

The DFT lengthN determines the frequency spacing between the locations of the DFT samples and
the time it takes to compute the DFT sample. A largeN makes the spacing smaller, providing higher
resolution in the frequency domain, but increases the computation time. The frequencyfk in Hz corre-
sponding to the DFT index (bin number)k is given by

fk D kFT

N
; k D 0; 1; : : : ; N � 1; (1)

whereFT is the sampling frequency. If the input signal contains a sinusoid of frequencyfin different from
that given above, its DFT will contain not only large-valuedsamples at values ofk closest toNfin=FT

but also nonzero values at other values ofk due to a phenomenon called leakage (see Example 11.16 of
Text). To minimize the leakage, it is desirable to chooseN appropriately so that the tone frequencies fall
as close as possible to a DFT bin, thus providing a very strongDFT sample at this index value relative to
all other values. For an 8-kHz sampling frequency, the best value of the DFT lengthN to detect the eight
fundamental DTMF tones has been found to be 205 and that for detecting the eight second harmonics
is 201.2 Table1 shows the DFT index values closest to each of the tone frequencies and their second

1International Telecommunication Union,CCITT Red Book, volume VI, Fascicle VI.1, October 1984.
2Digital Signal Processing Applications Using the ADSP-2100 Family, A. Mar, editor, Prentice Hall, Englewood Cliffs NJ, 1992.
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Figure 1: Selected DFT samples for each one of the DTMF tone signals forN D 205:

harmonics for these two values ofN , respectively. Figure1 shows 16 selected DFT samples computed
using a 205-point DFT of a length-205 sinusoidal sequence for each of the fundamental tone frequencies.

Program A-13 can be used to demonstrate the DFT-based DTMF detection algorithm. The outputs
generated by this program for the input symbol # are displayed in Figure2.

3All M ATLAB programs mentioned in this section are given in the ProgramsSection of the CD.



4 1: Applications of Digital Signal Processing

Table 1: DFT index values for DTMF tones forN D 205 and their second harmonics forN D 201:

Basic Nearest

tone Exact k integer Absolute

in Hz value k value error in k

697 17.861 18 0.139

770 19.731 20 0.269

852 21.833 22 0.167

941 24.113 24 0.113

1209 30.981 31 0.019

1336 34.235 34 0.235

1477 37.848 38 0.152

1633 41.846 42 0.154

Second Nearest

harmonic Exact k integer Absolute

in Hz value k value error in k

1394 35.024 35 0.024

1540 38.692 39 0.308

1704 42.813 43 0.187

1882 47.285 47 0.285

2418 60.752 61 0.248

2672 67.134 67 0.134

2954 74.219 74 0.219

3266 82.058 82 0.058

Adapted fromDigital Signal Processing Applications Using the ADSP-2100 Family, A. Mar, editor, Pren-
tice Hall, Englewood Cliffs NJ, 1992.
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Figure 2: A typical output of Program A-1.
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2 Spectral Analysis of Sinusoidal Signals

An important application of digital signal processing methods is in determining in the discrete-time do-
main the frequency contents of a continuous-time signal, more commonly known asspectral analysis.
More specifically, it involves the determination of either the energy spectrum or the power spectrum of
the signal. Applications of digital spectral analysis can be found in many fields and are widespread. The
spectral analysis methods are based on the following observation. If the continuous-time signalga.t/

is reasonably band-limited, the spectral characteristicsof its discrete-time equivalentgŒn� should pro-
vide a good estimate of the spectral properties ofga.t/. However, in most cases,ga.t/ is defined for
�1 < t < 1, and as a result,gŒn� is of infinite extent and defined for�1 < n < 1. Since it is
difficult to evaluate the spectral parameters of an infinite-length signal, a more practical approach is as
follows. First, the continuous-time signalga.t/ is passed through an analog anti-aliasing filter before it is
sampled to eliminate the effect of aliasing. The output of the filter is then sampled to generate a discrete-
time sequence equivalentgŒn�. It is assumed that the anti-aliasing filter has been designed appropriately,
and hence, the effect of aliasing can be ignored. Moreover, it is further assumed that the A/D converter
wordlength is large enough so that the A/D conversion noise can be neglected.

This and the following two sections provide a review of some spectral analysis methods. In this sec-
tion, we consider the Fourier analysis of a stationary signal composed of sinusoidal components. In Sec-
tion 3, we discuss the Fourier analysis of nonstationary signals with time-varying parameters. Section4
considers the spectral analysis of random signals.4

For the spectral analysis of sinusoidal signals, we assume that the parameters characterizing the si-
nusoidal components, such as amplitudes, frequencies, andphase, do not change with time. For such a
signalgŒn�, the Fourier analysis can be carried out by computing its Fourier transformG.ej!/:

G.ej!/ D
1

X

nD�1
gŒn�e�j!n : (2)

In practice, the infinite-length sequencegŒn� is first windowed by multiplying it with a length-N

window wŒn� to make it into a finite-length sequence
Œn� D gŒn� � wŒn� of lengthN . The spectral
characteristics of the windowed finite-length sequence
Œn� obtained from its Fourier transform� .ej!/

then is assumed to provide a reasonable estimate of the Fourier transformG.ej!/ of the discrete-time
signalgŒn�. The Fourier transform� .ej!/ of the windowed finite-length segment
Œn� is next evaluated
at a set ofR.R � N / discrete angular frequencies equally spaced in the range0 � ! < 2� by computing
its R-point discrete Fourier transform (DFT)� Œk�. To provide sufficient resolution, the DFT lengthR is
chosen to be greater than the windowN by zero-padding the windowed sequence withR�N zero-valued
samples. The DFT is usually computed using an FFT algorithm.

We examine the above approach in more detail to understand its limitations so that we can properly
make use of the results obtained. In particular, we analyze here the effects of windowing and the evaluation
of the frequency samples of the Fourier transform via the DFT.

Before we can interpret the spectral content of� .ej!/, that is,G.ej!/, from � Œk�, we need to re-
examine the relations between these transforms and their corresponding frequencies. Now, the relation
between theR-point DFT� Œk� of 
Œn� and its Fourier transform� .ej!/ is given by

� Œk� D � .ej!/
ˇ

ˇ

!D2�k=R
; 0 � k � R � 1: (3)

4For a detailed exposition of spectral analysis and a concisereview of the history of this area, see R. Kumaresan, "Spectral
analysis", In S.K. Mitra and J.F. Kaiser, editors,Handbook for Digital Signal Processing, chapter 16, pages 1143–1242. Wiley-
Interscience, New York NY, 1993.



6 1: Applications of Digital Signal Processing

The normalized discrete-time angular frequency!k corresponding to the DFT bin numberk (DFT fre-
quency) is given by

!k D 2�k

R
: (4)

Likewise, the continuous-time angular frequency˝k corresponding to the DFT bin numberk (DFT fre-
quency) is given by

˝k D 2�k

RT
: (5)

To interpret the results of the DFT-based spectral analysiscorrectly, we first consider the frequency-
domain analysis of a sinusoidal sequence. Now an infinite-length sinusoidal sequencegŒn� of normalized
angular frequency!o is given by

gŒn� D cos.!on C �/: (6)

By expressing the above sequence as

gŒn� D 1
2

�

ej.!onC�/ C e�j.!onC�/
�

(7)

and making use of Table 3.3 of Text, we arrive at the expression for its Fourier transform as

G.ej!/ D �

1
X

`D�1

�

ej�ı.! � !o C 2�`/ C e�j�ı.! C !o C 2�`/
�

: (8)

Thus, the Fourier transform is a periodic function of! with a period2� containing two impulses in each
period. In the frequency range,�� � ! < �, there is an impulse at! D !o of complex amplitude�ej�

and an impulse at! D �!o of complex amplitude�e�j� .
To analyzegŒn� in the spectral domain using the DFT, we employ a finite-length version of the se-

quence given by

Œn� D cos.!on C �/; 0 � n � N � 1: (9)

The computation of the DFT of a finite-length sinusoid has been considered in Example 11.16 of Text.
In this example, using Program 1110, we computed the DFT of a length-32 sinusoid of frequency 10 Hz
sampled at 64 Hz, as shown in Figure 11.32(a) of Text. As can beseen from this figure, there are only two
nonzero DFT samples, one at bink D 5 and the other at bink D 27. From Eq. (5), bink D 5 corresponds
to frequency 10 Hz, while bink D 27 corresponds to frequency 54 Hz, or equivalently,�10 Hz. Thus,
the DFT has correctly identified the frequency of the sinusoid.

Next, using the same program, we computed the 32-point DFT ofa length-32 sinusoid of frequency
11 Hz sampled at 64 Hz, as shown in Figure 11.32(b) of Text. This figure shows two strong peaks at
bin locationsk D 5 andk D 6; with nonzero DFT samples at other bin locations in the positive half
of the frequency range. Note that the bin locations 5 and 6 correspond to frequencies 10 Hz and 12 Hz,
respectively, according to Eq. (5). Thus the frequency of the sinusoid being analyzed is exactly halfway
between these two bin locations.

The phenomenon of the spread of energy from a single frequency to many DFT frequency locations
as demonstrated by Figure 11.32(b) of Text is calledleakage. To understand the cause of this effect, we
recall that the DFT� Œk� of a length-N sequence
Œn� is given by the samples of its discrete-time Fourier
transform (Fourier transform)� .ej!/ evaluated at! D 2�k=N , k D 0; 1; : : : ; N �1. Figure3 shows the
Fourier transform of the length-32 sinusoidal sequence of frequency 11 Hz sampled at 64 Hz. It can be
seen that the DFT samples shown in Figure 11.32(b) of Text areindeed obtained by the frequency samples
of the plot of Figure3.
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Figure 3: Fourier transform of a sinusoidal sequence windowed by a rectangular window.

To understand the shape of the Fourier transform shown in Figure3, we observe that the sequence of
Eq. (9) is a windowed version of the infinite-length sequencegŒn� of Eq. (6) obtained using a rectangular
windowwŒn�:

wŒn� D
�

1; 0 � n � N � 1,
0; otherwise.

(10)

Hence, the Fourier transform� .ej!/ of 
Œn� is given by the frequency-domain convolution of the Fourier
transformG.ej!/ of gŒn� with the Fourier transform	R.ej!/ of the rectangular windowwŒn�:

� .ej!/ D 1

2�

Z �

��

G.ej'/	R.ej.!�'// d'; (11)

where

	R.ej!/ D e�j!.N �1/=2 sin.!N=2/

sin.!=2/
: (12)

SubstitutingG.ej!/ from Eq. (8) into Eq. (11), we arrive at

� .ej!/ D 1
2
ej�	R.ej.!�!o// C 1

2
e�j�	R.ej.!C!o//: (13)

As indicated by Eq. (13), the Fourier transform� .ej!/ of the windowed sequence
Œn� is a sum of the
frequency shifted and amplitude scaled Fourier transform	R.ej!/ of the windowwŒn�; with the amount
of frequency shifts given bẏ !o. Now, for the length-32 sinusoid of frequency 11 Hz sampled at 64 Hz,
the normalized frequency of the sinusoid is11=64 D 0:172. Hence, its Fourier transform is obtained by
frequency shifting the Fourier transform	R.ej!/ of a length-32 rectangular window to the right and to
the left by the amount0:172 � 2� D 0:344�, adding both shifted versions, and then amplitude scaling
by a factor 1/2. In the normalized angular frequency range0 to 2�, which is one period of the Fourier
transform, there are two peaks, one at0:344� and the other at2�.1 � 0:172/ D 1:656�, as verified by
Figure3. A 32-point DFT of this Fourier transform is precisely the DFT shown in Figure 11.32(b) of
Text. The two peaks of the DFT at bin locationsk D 5 andk D 6 are frequency samples of the main lobe
located on both sides of the peak at the normalized frequency0.172. Likewise, the two peaks of the DFT
at bin locationsk D 26 andk D 27 are frequency samples of the main lobe located on both sides of the
peak at the normalized frequency 0.828. All other DFT samples are given by the samples of the sidelobes
of the Fourier transform of the window causing the leakage ofthe frequency components aṫ!o to other
bin locations, with the amount of leakage determined by the relative amplitude of the main lobe and the
sidelobes. Since the relative sidelobe levelAs`, defined by the ratio in dB of the amplitude of the main
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Figure 4: (a)–(e) DFT-based spectral analysis of a sum of two finite-length sinusoidal sequences of normalized
frequencies 0.22 and 0.34, respectively, of length 16 each for various values of DFT lengths.

lobe to that of the largest sidelobe, of the rectangular window is very high, there is a considerable amount
of leakage to the bin locations adjacent to the bins showing the peaks in Figure 11.32(b) of Text.

The above problem gets more complicated if the signal being analyzed has more than one sinusoid,
as is typically the case. We illustrate the DFT-based spectral analysis approach by means of Examples1
through3. Through these examples, we examine the effects of the length R of the DFT, the type of
window being used, and its lengthN on the results of spectral analysis.

EXAMPLE 1 Effect of the DFT Length on Spectral Analysis

The signal to be analyzed in the spectral domain is given by

xŒn� D 1
2 sin.2�f1n/ C sin.2�f2n/; 0 � n � N � 1: (14)

Let the normalized frequencies of the two length-16 sinusoidal sequences bef1 D 0:22 andf2 D 0:34.
We compute the DFT of their sumxŒn� for various values of the DFT lengthR. To this end, we
use Program A-2 whose input data are the lengthN of the signal, lengthR of the DFT, and the two
frequenciesf1 andf2. The program generates the two sinusoidal sequences, formstheir sum, then
computes the DFT of the sum and plots the DFT samples. In this example, we fixN D 16 and vary the
DFT lengthR from 16 to 128. Note that whenR > N, the M-file fft(x,R) automatically zero-pads
the sequencex with R-N zero-valued samples.
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Figure 5: Illustration of the frequency resolution property: (a)f1 D 0:28, f2 D 0:34; (b) f1 D 0:29, f2 D 0:34; (c)
f1 D 0:3, f2 D 0:34; and (d)f1 D 0:31, f2 D 0:34.

Figure4(a) shows the magnitudejXŒk�j of the DFT samples of the signalxŒn� of Eq. (14) for R D 16.
From the plot of the magnitudejX.ej! /j of the Fourier transform given in Figure4(b), it is evident
that the DFT samples given in Figure4(a) are indeed the frequency samples of the frequency response,
as expected. As is customary, the horizontal axis in Figure4(a) has been labeled in terms of the DFT
frequency sample (bin) numberk, wherek is related to the normalized angular frequency! through
Eq. (4). Thus,! D 2� �8=16 D � corresponds tok D 8; and! D 2� �15=16 D 1:875� corresponds
to k D 15.

From the plot of Figure4(a), it is difficult to determine whether there is one or more sinusoids in
the signal being examined and the exact locations of the sinusoids. To increase the accuracy of the
locations of the sinusoids, we increase the size of the DFT to32 and recompute the DFT, as indicated
in Figure4(c). In this plot, there appear to be some concentrations aroundk D 7 and aroundk D 11 in
the normalized frequency range from 0 to 0.5. Figure4(d) shows the DFT plot obtained forR D 64. In
this plot, there are two clear peaks occurring atk D 13 andk D 22 that correspond to the normalized
frequencies of 0.2031 and 0.3438, respectively. To improvefurther the accuracy of the peak location,
we compute next a 128-point DFT, as indicated in Figure4(e), in which the peak occurs aroundk D 27

andk D 45, corresponding to the normalized frequencies of 0.2109 and0.3516, respectively. However,
this plot also shows a number of minor peaks, and it is not clear by examining this DFT plot whether
additional sinusoids of lesser strengths are present in theoriginal signal or not.

As Example1 points out, in general, an increase in the DFT length improves the sampling accuracy
of the Fourier transform by reducing the spectral separation of adjacent DFT samples.

EXAMPLE 2 Effect of Spectral Separation on the DFT of a Sum of Two Sinusoids

In this example, we compute the DFT of a sum of two finite-length sinusoidal sequences, as given by
Eq. (14), with one of the sinusoids at a fixed frequency, while the frequency of the other sinusoid is
varied. Specifically, we keepf2 D 0:34 and varyf1 from 0:28 to 0:31. The length of the signal being
analyzed is 16, while the DFT length is 128.
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Figure5 shows the plots of the DFTs computed, along with the frequencies of the sinusoids obtained
using Program A-2. As can be seen from these plots, the two sinusoids are clearly resolved in Fig-
ures5(a) and (b), while they cannot be resolved in Figures5(c) and (d). The reduced resolution occurs
when the difference between the two frequencies becomes less than 0.04.

As indicated by Eq. (11), the Fourier transform� .ej!/ of a length-N sinusoid of normalized an-
gular frequency!1 is obtained by frequency translating the Fourier transform	R.ej!/ of a length-N
rectangular window to the frequencieṡ!1 and scaling their amplitudes appropriately. In the case of a
sum of two length-N sinusoids of normalized angular frequencies!1 and!2, the Fourier transform is
obtained by summing the Fourier transforms of the individual sinusoids. As the difference between the
two frequencies becomes smaller, the main lobes of the Fourier transforms of the individual sinusoids get
closer and eventually overlap. If there is a significant overlap, it will be difficult to resolve the peaks.
It follows therefore that the frequency resolution is essentially determined by the main lobe�ML of the
Fourier transform of the window.

Now from Table 10.2 of Text, the main lobe width�ML of a length-N rectangular window is given
by 4�=N . In terms of normalized frequency, the main lobe width of a length-16 rectangular window is
0:125. Hence, two closely spaced sinusoids windowed with a rectangular window of length 16 can be
clearly resolved if the difference in their frequencies is about half of the main lobe width, that is,0:0625.

Even though the rectangular window has the smallest main lobe width, it has the largest relative
sidelobe amplitude and, as a consequence, causes considerable leakage. As seen from Examples1 and2,
the large amount of leakage results in minor peaks that may befalsely identified as sinusoids. We now
study the effect of windowing the signal with a Hamming window.5

EXAMPLE 3 Minimization of the Leakage Using a Tapered Window

We compute the DFT of a sum of two sinusoids windowed by a Hamming window. The signal being
analyzed isxŒn� � wŒn�, wherexŒn� is given by

xŒn� D 0:85 sin.2�f1n/ C sin.2�f2n/;

andwŒn� is a Hamming window of lengthN . The two normalized frequencies aref1 D 0:22 and
f2 D 0:26.

Figure6(a) shows the 16-point DFT of the windowed signal with a window length of 16. As can be seen
from this plot, the leakage has been reduced considerably, but it is difficult to resolve the two sinusoids.
We next increase the DFT length to 64, while keeping the window length fixed at 16. The resulting
plot is shown in Figure6(b), indicating a substantial reduction in the leakage but with no change in
the resolution. From Table 10.2, the main lobe width�ML of a length-N Hamming window is8�=N .
Thus, forN D 16, the normalized main lobe width is0:25. Hence, with such a window, we can resolve
two frequencies if their difference is of the order of half the main lobe width, that is,0:125 or better. In
our example, the difference is0:04; which is considerably smaller than this value.

In order to increase the resolution, we increase the window length to 32, which reduces the main lobe
width by half. Figure6(c) shows its 32-point DFT. There now appears to be two peaks.Increasing the
DFT size to 64 clearly separates the two peaks, as indicated in Figure6(d). This separation becomes
more visible with an increase in the DFT size to 256, as shown in Figure6(e). Finally, Figure6(f) shows
the result obtained with a window length of 64 and a DFT lengthof 256.

It is clear from Examples1 through3 that performance of the DFT-based spectral analysis depends
on several factors, the type of window being used and its length, and the size of the DFT. To improve

5For a review of some commonly used windows, see Sections 10.2.4 and 10.2.5 of Text.
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Figure 6: (a)–(f) Spectral analysis using a Hamming window.

the frequency resolution, one must use a window with a very small main lobe width, and to reduce the
leakage, the window must have a very small relative sidelobelevel. The main lobe width can be reduced
by increasing the length of the window. Furthermore, an increase in the accuracy of locating the peaks is
achieved by increasing the size of the DFT. To this end, it is preferable to use a DFT length that is a power
of 2 so that very efficient FFT algorithms can be employed to compute the DFT. Of course, an increase in
the DFT size also increases the computational complexity ofthe spectral analysis procedure.

3 Analysis of Speech Signals Using the STFT

The short-term Fourier transform described in Section 5.11of Text is often used in the analysis of speech,
since speech signals are generally non-stationary. As indicated in Section 1.3 of Text, the speech signal,
generated by the excitation of the vocal tract, is composed of two types of basic waveforms: voiced and
unvoiced sounds. A typical speech signal is shown in Figure 1.16 of Text. As can be seen from this figure,
a speech segment over a small time interval can be consideredas a stationary signal, and as a result, the
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Figure 7: (a) Narrow-band spectrogram and (b) wide-band spectrogramof a speech signal.

DFT of the speech segment can provide a reasonable representation of the frequency domain characteristic
of the speech in this time interval.

As in the case of the DFT-based spectral analysis of deterministic signals discussed earlier, in the
STFT analysis of non-stationary signals, such as speech, the window also plays an important role. Both
the length and shape of the window are critical issues that need to be examined carefully. The function
of the windowwŒn� is to extract a portion of the signal for analysis and ensure that the extracted section
of xŒn� is approximately stationary. To this end, the window lengthR should be small, in particular for
signals with widely varying spectral parameters. A decrease in the window length increases the time-
resolution property of the STFT, whereas the frequency-resolution property of the STFT increases with
an increase in the window length. A shorter window thus provides awide-band spectrogram,while a
longer window results in anarrow-band spectrogram.

A shorter window developing a wide-band spectrogram provides a better time resolution, whereas a
longer window developing a narrow-band spectrogram results in an improved frequency resolution. In
order to provide a reasonably good estimate of the changes inthe vocal tract and the excitation, a wide-
band spectrogram is preferable. To this end, the window sizeis selected to be approximately close to one
pitch period, which is adequate for resolving the formants though not adequate to resolve the harmonics of
the pitch frequencies. On the other hand, to resolve the harmonics of the pitch frequencies, a narrow-band
spectrogram with a window size of several pitch periods is desirable.

The two frequency-domain parameters characterizing the Fourier transform of a window are its main
lobe width�ML and the relative sidelobe amplitudeAs`. The former parameter determines the ability
of the window to resolve two signal components in the vicinity of each other, while the latter controls
the degree of leakage of one component into a nearby signal component. It thus follows that in order to
obtain a reasonably good estimate of the frequency spectrumof a time-varying signal, the window should
be chosen to have a very small relative sidelobe amplitude with a length chosen based on the acceptable
accuracy of the frequency and time resolutions.

The following example illustrates the STFT analysis of a speech signal.

EXAMPLE 4 Short-Time Fourier Transform Analysis of a Speech Signal

Themtlb.mat file in theSignal Processing Toolboxof MATLAB contains a speech signal of duration
4001 samples sampled at 7418 Hz. We compute its STFT using a Hamming window of length 256
with an overlap of 50 samples between consecutive windowed signals using Program 3 in Section14.
Figures7(b) and (c) show, respectively, a narrow-band spectrogram and a wide-band spectrogram of the
speech signal of Figure7(a). The frequency and time resolution trade-off between the two spectrograms
of Figure7 should be evident.
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4 Spectral Analysis of Random Signals

As discussed in Section2, in the case of a deterministic signal composed of sinusoidal components, a
Fourier analysis of the signal can be carried out by taking the discrete Fourier transform (DFT) of a finite-
length segment of the signal obtained by appropriate windowing, provided the parameters characterizing
the components are time-invariant and independent of the window length. On the other hand, the Fourier
analysis of nonstationary signals with time-varying parameters is best carried out using the short-time
Fourier transform (STFT) described in Section3.

Neither the DFT nor the STFT is applicable for the spectral analysis of naturally occurring random
signals as here the spectral parameters are also random. These type of signals are usually classified
as noiselike random signals such as the unvoiced speech signal generated when a letter such as "/f/"
or "/s/" is spoken, and signal-plus-noise random signals, such as seismic signals and nuclear magnetic
resonance signals.6 Spectral analysis of a noiselike random signal is usually carried out by estimating
the power density spectrum using Fourier-analysis-based nonparametric methods, whereas a signal-plus-
noise random signal is best analyzed using parametric-model-based methods in which the autocovariance
sequence is first estimated from the model and then the Fourier transform of the estimate is evaluated. In
this section, we review both of these approaches.

4.1 Nonparametric Spectral Analysis

Consider a wide-sense stationary (WSS) random signalgŒn� with zero mean. According to the Wiener–
Khintchine theorem of Eq. (C.33) in Appendix C of Text, the power spectrum ofgŒn� is given by

Pgg.!/ D
1

X

`D�1
�gg Œ`�e�j!`; (15)

where�gg Œ`� is its autocorrelation sequence, which from Eq. (C.20b) of Appendix C of Text is given by

�gg Œ`� D E.gŒn C `�g�Œn�/: (16)

In Eq. (16), E.�/ denotes the expectation operator as defined in Eq. (C.4a) of Appendix C of Text.

Periodogram Analysis

Assume that the infinite-length random discrete-time signal gŒn� is windowed by a length-N window
sequencewŒn�, 0 � n � N � 1, resulting in the length-N sequence
Œn� D gŒn� � wŒn�. The Fourier
transform� .ej!/ of 
Œn� is given by

� .ej!/ D
N �1
X

nD0


Œn�e�j!n D
N �1
X

nD0

gŒn� � wŒn�e�j!n : (17)

The estimateOPgg.!/ of the power spectrumPgg.!/ is then obtained using

OPgg.!/ D 1

CN
j� .ej!/j2; (18)

6E.A. Robinson, A historical perspective of spectrum estimation, Proceedings of the IEEE, vol. 70, pp. 885-907, 1982.
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where the constantC is a normalization factor given by

C D 1

N

N �1
X

nD0

jwŒn�j2 (19)

and included in Eq. (18) to eliminate any bias in the estimate occurring due to the use of the windowwŒn�.
The quantity OPgg.ej!/ defined in Eq. (18) is called theperiodogramwhenwŒn� is a rectangular window
and is called amodified periodogramfor other types of windows.

In practice, the periodogramOPgg.!/ is evaluated at a discrete set of equally spacedR frequencies,
!k D 2�k=R, 0 � k � R � 1, by replacing the Fourier transform� .ej!/ with anR-point DFT� Œk� of
the length-N sequence
Œn� W

OPgg Œk� D 1

CN
j� Œk�j2: (20)

As in the case of the Fourier analysis of sinusoidal signals discussed earlier,R is usually chosen to be
greater thanN to provide a finer grid of the samples of the periodogram.

It can be shown that the mean value of the periodogramOPgg.!/ is given by

E
�

OPgg.!/
�

D 1

2�CN

Z �

��

Pgg.�/j	.ej.!��//j2 d�; (21)

wherePgg.!/ is the desired power spectrum and	.ej!/ is the Fourier transform of the window sequence
wŒn�. The mean value being nonzero for any finite-length window sequence, the power spectrum estimate
given by the periodogram is said to bebiased. By increasing the window lengthN , the bias can be
reduced.

We illustrate the power spectrum computation in Example5.

EXAMPLE 5 Power Spectrum of a Noise-Corrupted Sinusoidal Sequence

Let the random signalgŒn� be composed of two sinusoidal components of angular frequencies0:06�

and0:14� radians, corrupted with a Gaussian distributed random signal of zero mean and unity vari-
ance, and windowed by a rectangular window of two different lengths:N D 128 and1024. The random
signal is generated using the M-filerandn . Figures8(a) and (b) show the plots of the estimated power
spectrum for the two cases. Ideally the power spectrum should show four peaks at! equal to 0.06, 0.14,
0.86, and 0.94, respectively, and a flat spectral density at all other frequencies. However, Figure8(a)
shows four large peaks and several other smaller peaks. Moreover, the spectrum shows large amplitude
variations throughout the whole frequency range. AsN is increased to a much larger value, the peaks
get sharper due to increased resolution of the DFT, while thespectrum shows more rapid amplitude
variations.

To understand the cause behind the rapid amplitude variations of the computed power spectrum en-
countered in Example5, we assumewŒn� to be a rectangular window and rewrite the expression for the
periodogram given in Eq. (18) using Eq. (17) as

OPgg.!/ D 1

N

N �1
X

nD0

N �1
X

mD0

gŒm�g�Œn�e�j!.m�n/

D
N �1
X

kD�N C1

0

@

1

N

N �1�jkj
X

nD0

gŒn C k�g�Œn�

1

A e�j!k

D
N �1
X

kD�N C1

O�gg Œk�e�j!k : (22)
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Figure 8: Power spectrum estimate of a signal containing two sinusoidal components corrupted with a white noise
sequence of zero mean and unit variance Gaussian distribution: (a) Periodogram with a rectangular window of
lengthN D 128 and (b) periodogram with a rectangular window of lengthN D 1024:

Now O�gg Œk� is the periodic correlation ofgŒn� and is an estimate of the true correlation�gg Œk�. Hence,
OPgg.!/ is actually the Fourier transform ofO�gg Œk�. A few samples ofgŒn� are used in the computation

of O�gg Œk� whenk is nearN; yielding a poor estimate of the true correlation. This, in turn, results in rapid
amplitude variations in the periodogram estimate. A smoother power spectrum estimate can be obtained
by the periodogram averaging method discussed next.

Periodogram Averaging

The power spectrum estimation method, originally proposedby Bartlett7 and later modified by Welch,8

is based on the computation of the modified periodogram ofR overlapping portions of length-N input
samples and then averaging theseR periodograms. Let the overlap between adjacent segments beK

samples. Consider the windowedr th segment of the input data


 .r/Œn� D gŒn C rK�wŒn�; 0 � n � N � 1; 0 � r � R � 1; (23)

with a Fourier transform given by� .r/.ej!/. Its periodogram is given by

OP .r/
gg .!/ D 1

CN
j� .r/.ej!/j2: (24)

The Welch estimate is then given by the average of allR periodogramsOP .r/
gg .!/, 0 � r � R � 1 W

OPW
gg.!/ D 1

R

R�1
X

rD1

OP .r/
gg .!/: (25)

It can be shown that the variance of the Welch estimate of Eq. (25) is reduced approximately by a factor
R if the R periodogram estimates are assumed to be independent of eachother. For a fixed-length input

7M.S. Bartlett, Smoothing periodograms from the time serieswith continuous spectra,Nature(London), vol. 161, pp. 686-687,
1948.

8P.D. Welch, The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short,
modified periodograms,IEEE Trans. on Audio and Electroacoustics, vol. AU-15, pp. 70–73, 1967.
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Figure 9: Power spectrum estimates: (a) Bartlett’s method and (b) Welch’s method.

sequence,R can be increased by decreasing the window lengthN which in turn decreases the DFT
resolution. On the other hand, an increase in the resolutionis obtained by increasingN . Thus, there is a
trade-off between resolution and the bias.

It should be noted that if the data sequence is segmented by a rectangular window into contiguous
segments with no overlap, the periodiogram estimate given by Eq. (25) reduces to Barlett estimate.

Periodogram Estimate Computation Using MATLAB

TheSignal Processing Toolboxof MATLAB includes the M-filepsd for modified periodogram estimate
computation. It is available with several options. We illustrate its use in Example6.

EXAMPLE 6 Estimation of the Power Spectrum of a Noise-Corrupted Sinusoidal Sequence

We consider here the evaluation of the Bartlett and Welch estimates of the power spectrum of the random
signal considered in Example6. To this end, Program 4 in Section14can be used. This program is run
first with no overlap and with a rectangular window generatedusing the functionboxcar . The power
spectrum computed by the above program is then the Bartlett estimate, as indicated in Figure9(a). It is
then run with an overlap of 128 samples and a Hamming window. The corresponding power spectrum
is then the Welch estimate, as shown in Figure9(b). It should be noted from Figure9 that the Welch
periodogram estimate is much smoother than the Bartlett periodogram estimate, as expected. Compared
to the power spectrums of Figure8, there is a decrease in the variance in the smoothed power spectrums
of Figure 9, but the latter are still biased. Because of the overlap between adjacent data segments,
Welch’s estimate has a smaller variance than the others. It should be noted that both periodograms of
Figure9 show clearly two distinct peaks at0:06 and0:14.

4.2 Parametric Model-Based Spectral Analysis

In the model-based method, a causal LTI discrete-time system with a transfer function

H.z/ D
1

X

nD0

hŒn�z�n

D P.z/

D.z/
D

PL
kD0 pkz�k

1 C
PM

kD1 dkz�k
(26)
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is first developed, whose output, when excited by a white noise sequenceeŒn� with zero mean and variance
�2

e , matches the specified data sequencegŒn�: An advantage of the model-based approach is that it can
extrapolate a short-length data sequence to create a longerdata sequence for improved power spectrum
estimation. On the other hand, in nonparametric methods, spectral leakages limit the frequency resolution
if the data length is short.

The model of Eq. (26) is called anautoregressive moving-average(ARMA) process of order.L; M /

if P.z/ ¤ 1, an all-pole or autoregressive(AR) process of orderM if P.z/ D 1, and an all-zero or
moving-average(MA) process of orderL if D.z/ D 1. For an ARMA or an AR model, for stability,
the denominatorD.z/ must have all its zeros inside the unit circle. In the time domain, the input–output
relation of the model is given by

gŒn� D �
M
X

kD1

dkgŒn � k� C
L

X

kD0

pkeŒn � k�: (27)

As indicated in Section C.8 of Appendix C of Text, the outputgŒn� of the model is a WSS random
signal. From Eq. (C.85) of Appendix C of Text, it follows thatthe power spectrumPgg.!/ of gŒn� can be
expressed as

Pgg.!/ D �2
e jH.ej!/j2 D �2

e

jP.ej!/j2
jD.ej!/j2 ; (28)

whereH.ej!/ D P.ej!/=D.ej!/ is the frequency response of the model, and

P.ej!/ D
L

X

kD0

pke�j!k ; D.ej!/ D 1 C
M

X

kD1

dke�j!k :

In the case of an AR or an MA model, the power spectrum is thus given by

Pgg.!/ D
(

�2
e jP.ej!/j2; for an MA model,

�2
e

jD.ej! /j2 ; for an AR model.
(29)

The spectral analysis is carried out by first determining themodel and then computing the power
spectrum using either Eq. (28) for an ARMA model or using Eq. (29) for an MA or an AR model. To
determine the model, we need to decide the type of the model (i.e., pole-zero IIR structure, all-pole IIR
structure, or all-zero FIR structure) to be used; determinean appropriate order of its transfer function
H.z/ (i.e., bothL andM for an ARMA model orM for an AR model orL for an MA model); and
then, from the specified length-N datagŒn�; estimate the coefficients ofH.z/. We restrict our discussion
here to the development of the AR model, as it is simpler and often used. Applications of the AR model
include spectral analysis, system identification, speech analysis and compression, and filter design.9

Relation Between Model Parameters and the Autocorrelation Sequence

The model filter coefficientsfpkg and fdkg are related to the autocorrelation sequence�gg Œ`� of the
random signalgŒn�. To establish this relation, we obtain from Eq. (27),

�gg Œ`� D �
M

X

kD1

dk�gg Œ` � k� C
L

X

kD0

pk�eg Œ` � k�; �1 < ` < 1; (30)

9 For a discussion on the development of the MA model and the ARMA model, see R. Kumaresan, Spectral analysis, In S.K.
Mitra and J.F. Kaiser, editors,Handbook for Digital Signal Processing, chapter 16, pages 1143–1242. Wiley-Interscience, New
York NY, 1993.
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by multiplying both sides of the equation withg�Œn � `� and taking the expected values. In Eq. (30), the
cross-correlation�eg Œ`� betweengŒn� andeŒn� can be written as

�eg Œ`� D E.g�Œn�eŒn C `�/

D
1

X

kD0

h�Œk� E.e�Œn � k�eŒn C `�/ D �2
e h�Œ�`�; (31)

wherehŒn� is the causal impulse response of the LTI model as defined in Eq. (26) and�2
e is the variance

of the white noise sequenceeŒn� applied to the input of the model.
For an AR model,L D 0, and hence Eq. (30) reduces to

�eg Œ`� D

8

<

:

�
PM

kD1 dk�gg Œ` � k�; for ` > 0,
�

PM
kD1 dk�gg Œ` � k� C �2

e ; for ` D 0,
��

gg Œ�`�; for ` < 0.
(32)

From Eq. (32), we obtain for1 � ` � M , a set ofM equations,

M
X

kD1

dk�gg Œ` � k� D ��eg Œ`�; 1 � ` � M; (33)

which can be written in matrix form as
2

6

6

6

4

�gg Œ0� �gg Œ�1� � � � �gg Œ�M C 1�

�gg Œ1� �gg Œ0� � � � �gg Œ�M C 2�
:::

:::
: : :

:::

�gg ŒM � 1� �gg ŒM � 2� � � � �gg Œ0�

3

7

7

7

5

2

6

6

6

4

d1

d2

:::

dM

3

7

7

7

5

D �

2

6

6

6

4

�gg Œ1�

�gg Œ2�
:::

�gg ŒM �

3

7

7

7

5

: (34)

For` D 0; we also get from Eq. (32)

�gg Œ0� C
M
X

kD1

dk�gg Œ�k� D �2
e : (35)

Combining Eq. (35) with Eq. (34) we arrive at

2

6

6

6

4

�gg Œ0� �gg Œ�1� � � � �gg Œ�M �

�gg Œ1� �gg Œ0� � � � �gg Œ�M C 1�
:::

:::
: : :

:::

�gg ŒM � �gg ŒM � 1� � � � �gg Œ0�

3

7

7

7

5

2

6

6

6

6

6

4

1

d1

d2

:::

dM

3

7

7

7

7

7

5

D

2

6

6

6

6

6

4

�2
e

0

0
:::

0

3

7

7

7

7

7

5

: (36)

The matrix equation of Eq. (36) is more commonly known as theYule–Walker equation. It can be seen
from Eq. (36) that knowing theM C 1 autocorrelation samples�xxŒ`� for 0 � ` � M , we can determine
the model parametersdk for 1 � k � M by solving the matrix equation. The.M C 1/ � .M C 1/ matrix
in Eq. (36) is aToeplitz matrix.10

10A Toeplitz matrix has the same element values along each negative-sloping diagonal.
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Because of the structure of the Toeplitz matrix, the matrix equation of Eq. (36) can be solved using
the fastLevinson–Durbin algorithm.11;12 This algorithm develops the AR model recursively. Let the filter
coefficients at thei th iteration be denoted byd .i/

k
; 0 � k � i . Define two other parameters for thei th

stage, thereflection coefficientKi and theprediction errorEi . The recursion algorithm consists of the
following steps:

Step 1: Start the recursion with:

K1 D d
.1/
1 D �gg Œ1�=�gg Œ0�; E1 D �gg Œ0�.1 � jK1j2/:

Step 2: For i > 0, evaluate the.i C 1/th reflection coefficient using

KiC1 D d
.iC1/
iC1 D �gg Œi C 1� C

Pi
rD1 d

.i/
r �gg Œi C 1 � r�

Ei

:

Step 3: For i > 0, evaluate ther th filter coefficient of the.i C 1/-th order model withr � i using:

d .iC1/
r D d .i/

r C KrC1.d
.i/
iC1�r/�:

Step 4: Determine the.i C 1/th prediction error using:

EiC1 D Ei .1 � jKi j2/:

Step 5: If i C 1 D M stop the iteration, otherwise go back to Step 2.

The causal all-pole LTI systemH.z/ D 1=D.z/ resulting from the application of the Levinson–
Durbin recursions is guaranteed to be BIBO stable. Moreover, the recursion automatically leads to a
realization in the form of a cascaded FIR lattice structure,as shown in Figure 8.40.

Power Spectrum Estimation Using an AR Model

The AR model parameters can be determined using theYule–Walker method, which makes use of the
estimates of the autocorrelation sequence samples, as their actual values are not known a priori. The
autocorrelation at lag̀ is determined from the specified data samplesgŒn� for 0 � n � N � 1 using

O�gg Œ`� D 1

N

N �1�j`j
X

nD0

g�Œn� gŒn C `�; 0 � ` � N � 1: (37)

11N. Levinson, The Wiener RMS criterion in filter design and prediction, J. Math. Phys., vol. 25, pp. 261–278, 1947.
12 J. Durbin, Efficient estimation of parameters in moving average model,Biometrika, vol. 46, pp. 306–316, 1959.
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The above estimates are used in Eq. (34) in place of the true autocorrelation samples, with the AR model
parametersdk replaced with their estimatesOdk. The resulting equation is next solved using the Levinson–
Durbin algorithm to determine the estimates of the AR model parametersOdk. The power spectrum esti-
mate is then evaluated using

OPgg.!/ D
OEM

ˇ

ˇ

ˇ
1 C

PM
kD1

Odk e�j!k

ˇ

ˇ

ˇ

2
; (38)

where OEM is the prediction error for theM th-order AR model:

OEM D O�gg Œ0�

M
Y

iD1

�

1 � j OKi j2
�

: (39)

The Yule–Walker method is related to the linear prediction problem. Here the problem is to predict
theN -th samplegŒN � from the previousM data samplesgŒn�; 0 � n � M � 1, with the assumption that
data samples outside this range are zeros. The predicted value OgŒn� of the data samplegŒn� can be found
by a linear combination of the previousM data samples as

OgŒn� D �
M

X

kD1

OdkgŒn � k�

D gŒn� � eŒn�; (40)

whereeŒn� is the prediction error. For the specified data sequence, Eq.(40) leads toN C M prediction
equations given by

gŒn� C
M

X

kD1

gŒn � k� Odk D eŒn�; 0 � n � N C M � 1: (41)

The optimum linear predictor coefficientsOdk are obtained by minimizing the error

1

N

N CM�1
X

nD0

jeŒn�j2:

It can be shown that the solution of the minimization problemis given by Eq. (34). Thus, the best all-pole
linear predictor filter is also the AR model resulting from the solution of Eq. (34).

It should be noted that the AR model is guaranteed stable. Butthe all-pole filter developed may not
model an AR process exactly of the same order due to the windowing of the data sequence to a finite
length, with samples outside the window range assumed to be zeros.

The functionlpc in MATLAB finds the AR model using the above method.

EXAMPLE 7 Development of an AR Model of an FIR Filter

We consider the approximation of an FIR digital filter of order 13 with an all-pole IIR digital filter of
order 7. The coefficients of the FIR filter are obtained using the functionfirpm , and the all-pole IIR
filter is designed using the functionlpc . Program 5 in Section14 can be used for the design. The
magnitude response plots generated by running this programare shown in Figure10.

Several comments are in order here. First, the linear predictor coefficientsfdi g match the power spectral
densities of the all-pole model with that of the sequencefgi g. Since, the sequence of the FIR filter
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Figure 10: Magnitude response of the FIR filter (shown with solid line) and the all-pole IIR model (shown with
dashed line).

coefficientsfbi g is not a power signal, and to convert the energy spectrum of the sequencefbi g to a
power spectrum, the sequencefbi g needs to be divided by its lengthN . Hence, to approximate the
power spectrum density of the sequencefbi g with that of the AR model, we need to scale the ARMA
filter transfer function with the factor

p
NE, whereE is the variance of the prediction error. Second,

it can be seen from this figure that the AR model has reasonablymatched the passband response, with
peaks occurring very close to the peaks of the magnitude response of the FIR system. However, there
are no nulls in the stopband response of the AR model even though the stopband response of the FIR
system has nulls. Since the nulls are generated by the zeros of the transfer function, an all-pole model
cannot produce nulls.

In order to apply the above method to power spectrum estimation, it is necessary to estimate first the
model orderM . A number of formulae have been advanced for order estimation.13 Unfortunately, none
of the these formulae yields a really good estimate of the true model order in many applications.

5 Musical Sound Processing

Recall from our discussion in Section 1.4.1 that almost all musical programs are produced in basically
two stages. First, sound from each individual instrument isrecorded in an acoustically inert studio on
a single track of a multitrack tape recorder. Then, the signals from each track are manipulated by the
sound engineer to add special audio effects and are combinedin a mix-down system to finally generate
the stereo recording on a two-track tape recorder.14; 15 The audio effects are artificially generated using
various signal processing circuits and devices, and they are increasingly being performed using digital
signal processing techniques.16

Some of the special audio effects that can be implemented digitally are reviewed in this section.

13R. Kumaresan, Spectral analysis, In S.K. Mitra and J.F. Kaiser, editors,Handbook for Digital Signal Processing, chapter 16,
pages 1143–1242. Wiley-Interscience, New York NY, 1993.

14B. Blesser and J.M. Kates, Digital processing in audio signals, In A.V. Oppenheim, editor,Applications of Digital Signal
Processing, chapter 2. Prentice Hall, Englewood Cliffs NJ, 1978.

15J.M. Eargle,Handbook of Recording Engineering, Van Nostrand Reinhold, New York NY, 1986.
16S.J. Orfanidis,Introduction to Signal Processing, Prentice Hall, Englewood Cliffs NJ, 1996.
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Figure 11: Single echo filter: (a) filter structure, (b) typical impulseresponse, and (c) magnitude response forR D 8

and˛ D 0:8.

5.1 Time-Domain Operations

Commonly used time-domain operations carried on musical sound signals are echo generation, reverber-
ation, flanging, chorus generation, and phasing. In each of these operations, the basic building block is a
delay.

Single Echo Filter

Echoes are simply generated by delay units. For example, thedirect sound and a single echo appearingR

sampling periods later can be simply generated by the FIR filter of Figure11(a), which is characterized
by the difference equation

yŒn� D xŒn� C ˛xŒn � R�; j˛j < 1; (42)

or, equivalently, by the transfer function

H.z/ D 1 C ˛z�R : (43)

In Eqs. (42) and (43), the delay parameterR denotes the time the sound wave takes to travel from the
sound source to the listener after bouncing back from the reflecting wall, whereas the parameter˛, with
j˛j < 1, represents the signal loss caused by propagation and reflection.

The impulse response of the single echo filter is sketched in Figure11(b). The magnitude response
of a single echo FIR filter for̨ D 0:8 andR D 8 is shown in Figure11(c). The magnitude response
exhibitsR peaks andR dips in the range0 � ! < 2�, with the peaks occurring at! D 2�k=R and
the dips occurring at! D .2k C 1/�=R, k D 0; 1; : : : ; R � 1. Because of the comb-like shape of the
magnitude response, such a filter is also known as acomb filter. The maximum and minimum values of
the magnitude response are given by1 C ˛ D 1:8 and1 � ˛ D 0:2, respectively.

Program A-617 can be used to investigate the effect of a single echo on the speech signal shown in
Figure 1.16 of Text.

17Reproduced with permission of Prof. Dale Callahan, University of Alabama, Birmingham, AL.
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Figure 12: Multiple echo filter generatingN � 1 echoes: (a) filter structure and (b) impulse response with˛ D 0:8

for N D 6 andR D 4.

Multiple Echo Filter

To generate a fixed number of multiple echoes spacedR sampling periods apart with exponentially de-
caying amplitudes, one can use an FIR filter with a transfer function of the form

H.z/ D 1 C ˛z�R C ˛2z�2R C � � � C ˛N �1z�.N �1/R D 1 � ˛N z�NR

1 � ˛z�R
: (44)

An IIR realization of this filter is sketched in Figure12(a). The impulse response of a multiple echo filter
with ˛ D 0:8 for N D 6 andR D 4 is shown in Figure12(b).

An infinite number of echoes spacedR sampling periods apart with exponentially decaying amplitudes
can be created by an IIR filter with a transfer function of the form

H.z/ D 1 C ˛z�R C ˛2z�2R C ˛3z�3R C � � �

D 1

1 � ˛z�R
; j˛j < 1: (45)

Figure13(a) shows one possible realization of the above IIR filter whose first 61 impulse response samples
for R D 4 are indicated in Figure13(b). The magnitude response of this IIR filter forR D 7 is sketched
in Figure13(c). The magnitude response exhibitsR peaks andR dips in the range0 � ! < 2�, with the
peaks occurring at! D 2�k=R and the dips occurring at! D .2k C 1/�=R, k D 0; 1; : : : ; R � 1. The
maximum and minimum values of the magnitude response are given by1=.1 � ˛/ D 5 and1=.1 C ˛/ D
0:5556, respectively.

The fundamental repetition frequencyof the IIR multiple echo filter of Eq. (45) is given byFR D
FT =R Hz, or !R D 2�=R radians. In practice, the repetition frequencyFR is often locked to the fun-
damental frequency of an accompanying musical instrument,such as the drum beat. For a specifiedFR,
the delay parameterR can be determined fromR D FR=FT , resulting in a time delay ofRT D R=FT

seconds.16

Program 718 can be used to investigate the effect of multiple echos on thespeech signal shown in
Figure 1.16 of Text.

Reverberation

As indicated in Section 1.4.1, the sound reaching the listener in a closed space, such as a concert hall,
consists of several components: direct sound, early reflections, and reverberation. The early reflections

18Reproduced with permission of Prof. Dale Callahan, University of Alabama, Birmingham, AL.
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Figure 13: IIR filter generating an infinite number of echoes: (a) filter structure, (b) impulse response with̨D 0:8

for R D 4, and (c) magnitude response with˛ D 0:8 for R D 7.

are composed of several closely spaced echoes that are basically delayed and attenuated copies of the
direct sound, whereas the reverberation is composed of densely packed echoes. The sound recorded in
an inert studio is different from that recorded inside a closed space, and, as a result, the former does not
sound “natural” to a listener. However, digital filtering can be employed to convert the sound recorded
in an inert studio into a natural-sounding one by artificially creating the echoes and adding them to the
original signal.

The IIR comb filter of Figure13(a) by itself does not provide natural-sounding reverberations for
two reasons.19 First, as can be seen from Figure13(c), its magnitude response is not constant for all
frequencies, resulting in a “coloration” of many musical sounds that are often unpleasant for listening
purposes. Second, the output echo density, given by the number of echoes per second, generated by a unit
impulse at the input, is much lower than that observed in a real room, thus causing a “fluttering” of the
composite sound. It has been observed that approximately 1000 echoes per second are necessary to create
a reverberation that sounds free of flutter.19 To develop a more realistic reverberation, a reverberator with
an allpass structure, as indicated in Figure13(a), has been proposed.19 Its transfer function is given by

H.z/ D ˛ C z�R

1 C ˛z�R
; j˛j < 1: (46)

In the steady state, the spectral balance of the sound signalremains unchanged due to the unity magnitude
response of the allpass reverberator.

Program A-820 can be used to investigate the effect of an allpass reverberator on the speech signal
shown in Figure 1.16.

The IIR comb filter of Figure13(a) and the allpass reverberator of Figure14(a) are basic reverberator
units that are suitably interconnected to develop a natural-sounding reverberation. Figure15 shows one
such interconnection composed of a parallel connection of four IIR echo generators in cascade with two

19M.R. Schroeder, Natural sounding artificial reverberation, Journal of the Audio Engineering Society, vol. 10, pp. 219–223,
1962

20Reproduced with permission of Prof. Dale Callahan, University of Alabama, Birmingham, AL.
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Figure 14: Allpass reverberator: (a) block diagram representation and (b) impulse response with̨D 0:8 for R D 4.
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allpass reverberators.19 By choosing different values for the delays in each section (obtained by adjusting
Ri ) and the multiplier constants̨i ; it is possible to arrive at a pleasant-sounding reverberation, duplicating
that occurring in a specific closed space, such as a concert hall.

Program A-921 can be used to investigate the effect of the above natural-sounding reverberator on the
speech signal shown in Figure 1.16.

21Reproduced with permission of Prof. Dale Callahan, University of Alabama, Birmingham, AL.
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Figure 16: (a) Lowpass reverberator and (b) a multitap reverberator structure.

An interesting modification of the basic IIR comb filter of Figure13(a) is obtained by replacing the
multiplier ˛ with a lowpass FIR or IIR filterG.z/, as indicated in Figure16(a). It has a transfer function
given by

H.z/ D 1

1 � z�RG.z/
; (47)

obtained by replacing̨ in Eq. (45) with G.z/. This structure has been referred to as theteeth filter
and has been introduced to provide a natural tonal characterto the artificial reverberation generated by
it.22 This type of reverberator should be carefully designed to avoid the stability problem. To provide a
reverberation with a higher echo density, the teeth filter has been used as a basic unit in a more complex
structure such as that indicated in Figure14(b).

Additional details concerning these and other such composite reverberator structures can be found in
literature.19;23

Flanging

There are a number of special sound effects that are often used in the mix-down process. One such effect
is calledflanging. Originally, it was created by feeding the same musical piece to two tape recorders and
then combining their delayed outputs while varying the difference�t between their delay times. One way
of varying�t is to slow down one of the tape recorders by placing the operator’s thumb on the flange
of the feed reel, which led to the name flanging.15 The FIR comb filter of Figure11(a) can be modified
to create the flanging effect. In this case, the unit generating the delay ofR samples, or equivalently, a
delay ofRT seconds, whereT is the sampling period, is made a time-varying delayˇ.n/, as indicated in
Figure17. The corresponding input–output relation is then given by

yŒn� D xŒn� C ˛xŒn � ˇ.n/�: (48)

22L.D.J. Eggermont and P.J. Berkhout, Digital audio circuits: Computer simulations and listening tests,Philips Technical Review,
vol. 41, No. 3, pp. 99–103, 1983/84.

23J.A. Moorer, About this reverberation business,Computer Music Journal, vol. 3, No. 2, pp. 13–28, 1979.
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Periodically varying the delay̌.n/ between0 andR with a low frequency!o such as

ˇ.n/ D R

2
.1 � cos.!on// (49)

generates a flanging effect on the sound. It should be noted that, as the value of̌ .n/ at an instantn;

in general, has a non-integer value, in an actual implementation, the output sample valueyŒn� should be
computed using some type of interpolation method such as that outlined in Section 13.5 of Text.

Program A-1024 can be used to investigate the effect of flanging on the musical sound signaldt.wav.

Chorus Generator

The choruseffect is achieved when several musicians are playing the same musical piece at the same
time but with small changes in the amplitudes and small timing differences between their sounds. Such
an effect can also be created synthetically by achorus generatorfrom the music of a single musician. A
simple modification of the digital filter of Figure17 leads to a structure that can be employed to simulate
this sound effect. For example, the structure of Figure18can effectively create a chorus of four musicians
from the music of a single musician. To achieve this effect, the delayš i .n/ are randomly varied with
very slow variations.

Thephasingeffect is produced by processing the signal through a narrowband notch filter with vari-
able notch characteristics and adding a scaled portion of the notch filter output to the original signal, as
indicated in Figure19.16 The phase of the signal at the notch filter output can dramatically alter the phase
of the combined signal, particularly around the notch frequency when it is varied slowly. The tunable
notch filter can be implemented using the technique described in Section 8.7.2 of Text. The notch filter in
Figure19 can be replaced with a cascade of tunable notch filters to provide an effect similar to flanging.
However, in flanging, the swept notch frequencies are alwaysequally spaced, whereas in phasing, the
locations of the notch frequencies and their corresponding3-dB bandwidths are varied independently.

24Reproduced with permission of Prof. Dale Callahan, University of Alabama, Birmingham, AL.
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5.2 Frequency-Domain Operations

The frequency responses of individually recorded instruments or musical sounds of performers are fre-
quently modified by the sound engineer during the mix-down process. These effects are achieved by
passing the original signals through an equalizer, briefly reviewed in Section 1.4.1 of Text. The purpose
of the equalizer is to provide “presence” by peaking the midfrequency components in the range of 1.5 to
3 kHz and to modify the bass–treble relationships by providing “boost” or “cut” to components outside
this range. It is usually formed from a cascade of first-orderand second-order filters with adjustable fre-
quency responses. Many of the low-order digital filters employed for implementing these functions have
been obtained by applying the bilinear transformation to analog filters. We first review the analog filters
and then develop their digital equivalents. In addition, wedescribe some new structures with more flexible
frequency responses.

Analog Filters

Simple lowpass and highpass analog filters with a Butterworth magnitude response are usually employed
in analog mixers. The transfer functions of first-order analog lowpass and highpass Butterworth filters
were given in Eq. (9.22) and (9.27) of Text, respectively. The transfer functions of higher-order low-
pass and highpass analog Butterworth filters can be derived using the method outlined in Section A.2 of
Appendix A in Text. Also used in analog mixers are second-order analog bandpass and bandstop filters
whose transfer functions were given in Eq. (9.29) and Eq. (9.34) of Text, respectively.

A first-order lowpass analog shelving filter for boost has a transfer function given by25

H
.B/
LP .s/ D s C K˝c

s C ˝c

; K > 1: (50)

It follows from Eq. (50) that
H

.B/
LP .0/ D K; H

.B/
LP .1/ D 1: (51)

The transfer functionH .B/
LP .s/ of Eq. (50) can also be used for cut ifK < 1. However, in this case,

H
.B/
LP .s/ has a magnitude response that is not symmetrical to that for the case ofK > 1 (boost) with

respect to the frequency axis without changing the cutoff frequency.25 The first-order lowpass analog

25P.A. Regalia and S.K. Mitra, Tunable digital frequency response equalization filters,IEEE Trans. Acoustics, Speech, and Signal
Processing, vol. ASSP-35, pp. 118–120, January 1987
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shelving filter providing cut that retains the cutoff frequency has a transfer function given by26

H
.C /
LP .s/ D s C ˝c

s C ˝c=K
; K < 1; (52)

for which
H

.C /
LP .0/ D K; H

.C /
LP .1/ D 1: (53)

The first-order highpass analog shelving filterH
.B/
HP .s/ for the boost and cut can be derived by applying

a lowpass-to-highpass transformation to the transfer functions of Eqs. (50) and (52), respectively. The
transfer function for boost is given by

H
.B/
HP .s/ D Ks C ˝c

s C ˝c

; K > 1; (54)

for which
H

.B/
HP .0/ D 1; H

.B/
HP .1/ D K: (55)

Likewise, the transfer function for cut is given by

H
.C /
HP .s/ D K

�

s C ˝c

s C K˝c

�

; K < 1; (56)

for which
H

.C /
HP .0/ D 1; H

.C /
HP .1/ D K: (57)

Thepeak filteris used for boost or cut at a finite frequency̋o. The transfer function of an analog
second-order peak filter is given by

H
.BC /
BP .s/ D s2 C KBs C ˝2

o

s2 C Bs C ˝2
o

; (58)

for which the maximum (minimum) value of the magnitude response, determined byK, occurs at the
center frequency̋ o. The above peak filter operates as a bandpass filter forK > 1 and as a bandstop filter
for K < 1. The 3-dB bandwidth of the passband for a bandpass response and the 3-dB bandwidth of the
stopband for a bandstop response is given byB D ˝o=Qo.

First-Order Digital Filters and Equalizers

The analog filters can be converted into their digital equivalents by applying the Type 1 bilinear trans-
formation of Eq. (9.14) of Text to their corresponding transfer functions. The design of first-order But-
terworth digital lowpass and highpass filters derived via bilinear transformation of corresponding analog
transfer functions has been treated in Section 9.2.2 of Text. The relevant transfer functions are given in
Eqs. (9.24) and (9.28), respectively, of Text.

The transfer functions of the first-order digital lowpass and highpass filters given by Eqs. (9.24) and
(9.28) can be alternatively expressed as

GLP .z/ D 1
2

f1 � A1.z/g ; (59a)

GHP .z/ D 1
2

f1 C A1.z/g ; (59b)

26U. Zölzer,Digital Audio Signal Processing, Wiley, New York NY, 1997.
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whereA1.z/ is a first-order allpass transfer function given by

A1.z/ D ˛ � z�1

1 � ˛z�1
: (60)

A composite realization of the above two transfer functionsis sketched in Figure20, where the first-order
allpass digital transfer functionA1.z/ can be realized using any one of the single multiplier structures
of Figure 8.24 of Text. Note that in this structure, the 3-dB cutoff frequency!c of both digital filters is
independently controlled by the multiplier constant˛ of the allpass section.

To derive the transfer functionG.B/
LP .z/ of a first-order digital low-frequency shelving filter for boost,

we first observe that Eq. (54) can be rewritten as a sum of a first-order analog lowpass and afirst-order
analog highpass transfer function23

H
.B/
LP .s/ D K

�

˝c

s C ˝c

�

C
�

s

s C ˝c

�

: (61)

Applying the bilinear transformation to the transfer function of Eq. (61) and making use of Eqs. (59a) and
(59b), we arrive at

G
.B/
LP .z/ D K

2
Œ1 � AB .z/� C 1

2
Œ1 C AB.z/� ; (62)

where, to emphasize the fact that the above shelving filter isfor boost, we have replacedA1.z/ with
AB.z/; with the latter rewritten as

AB .z/ D ˛B � z�1

1 � ˛Bz�1
: (63)

From Eq. (9.32) of Text the tuning parameter˛B is given by

˛B D 1 � tan.!cT=2/

1 C tan.!cT=2/
: (64)

Likewise, the transfer function of a first-order digital low-frequency shelving filter for cut is obtained
by applying the bilinear transformation toH .C /

LP .s/ of Eq. (56).24 To this end, we first rewriteH .C /
LP .s/ as

a sum of a lowpass and a highpass transfer functions as indicated below:

H
.C /
LP .s/ D

�

˝c

s C ˝c=K

�

C
�

s

s C ˝c=K

�

; (65)

which, after a bilinear transformation, leads to the transfer function of a first-order low-frequency digital
shelving filter for cut as given by

G
.C /
LP .z/ D K

2
Œ1 � AC .z/� C 1

2
Œ1 C AC .z/�; (66)
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where

AC .z/ D ˛C � z�1

1 � ˛C z�1
; (67)

with

˛C D K � tan.!cT=2/

K C tan.!cT=2/
: (68)

It should be noted thatG.C /
LP .z/ of Eq. (66) is identical in form toG

.B/
LP .z/ of Eq. (62). Hence, the digital

filter structure shown in Figure21 can be used for both boost and cut, except for boostA1.z/ D AB.z/

and for cutA1.z/ D AC .z/.
Figures22(a) and (b) show the gain responses of the first-order lowpassdigital shelving filter obtained

by varying the multiplier constantK and!c . Note that the parameterK controls the amount of boost or
cut at low frequencies, while the parameters˛B and˛C control the boost bandwidth and cut bandwidth,
respectively.

To derive the transfer functionG.B/
HP .z/ of a first-order high-frequency shelving filter for boost, we

first express Eq. (54) as a sum of a first-order analog lowpass and highpass transfer function and then
apply the bilinear transformation to the resulting expression, arriving at

G
.B/
HP .z/ D 1

2
Œ1 � AB.z/� C K

2
Œ1 C AB.z/� ; (69)

whereAB .z/ is as given by Eq. (63), with the multiplier constant̨B given by Eq. (64).
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Figure 23: High-frequency shelving filter.
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Figure 24: Gain responses of the high-frequency shelving filter of Figure 23 (a) for three values of the parameterK;

with !c D 0:5� andT D 1, and (b) for three values of the parameter!c ; with K D 10 andT D 1.

Likewise, the transfer functionG.C /
HP .z/ of a first-order high-frequency shelving filter for cut is ob-

tained by expressing Eq. (56) as a sum of a first-order analog lowpass and highpass transfer function and
then applying the bilinear transformation resulting in

G
.C /
HP .z/ D 1

2
Œ1 � AC .z/� C K

2
Œ1 C AC .z/� ; (70)

whereAC .z/ is as given by Eq. (66), with the multiplier constant̨C given by

˛C D 1 � K tan.!cT=2/

1 C K tan.!cT=2/
: (71)

As G
.B/
HP .z/ of Eq. (69) and G

.C /
HP .z/ of Eq. (70) are identical in form, the digital filter structure

of Figure23 can be employed for both boost and cut, except for boostA1.z/ D AB.z/ and for cut
A1.z/ D AC .z/.

Figures24(a) and (b) show the gain responses of the first-order high-frequency shelving filter obtained
by varying the multiplier constantK and!c . Note that, as in the case of the low-frequency shelving filter,
here the parameterK controls the amount of boost or cut at high frequencies, while the parameters̨B

and˛C control the boost bandwidth and cut bandwidth, respectively.

Second-Order Digital Filters and Equalizers

The design of second-order digital bandpass and bandstop filters derived via bilinear transformation of
corresponding analog transfer functions has been treated in Section 9.2.3 of Text. The relevant transfer
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Figure 25: A parametrically tunable second-order digital bandpass/bandstop filter: (a) overall structure and (b)
allpass section realizingA2.z/.

functions, given in Eqs. (9.40) and (9.44) of Text, can be alternatively expressed as

GBP .z/ D 1
2

Œ1 � A2.z/� ; (72a)

GBS .z/ D 1
2

Œ1 C A2.z/� ; (72b)

whereA2.z/ is a second-order allpass transfer function given by

A2.z/ D ˛ � ˇ.1 C ˛/z�1 C z�2

1 � ˇ.1 C ˛/z�1 C ˛z�2
: (73)

A composite realization of both filters is indicated in Figure25(a), where the second-order allpass section
is realized using the cascaded lattice structure of Figure25(b) for independent tuning of the center (notch)
frequency!o and the 3-dB bandwidthBw .

The transfer functionG.B/
BP .z/ of a second-order peak filter for boost can be derived by applying the

simplified lowpass-to-bandpass spectral transformation of Eq. (9.47) of Text to the lowpass shelving filter
of Eq. (62), resulting in16

G
.B/
BP .z/ D G

.B/
LP .z/ j

z�1!�z�1
�

z�1Cˇ

1Cˇz�1

� D K
2

Œ1 � A2B.z/� C 1
2
Œ1 C A2B.z/�; (74)

where
ˇ D cos.!o/; (75)

determines the center angular frequency!o where the bandpass response peaks, and

A2B.z/ D ˛B � ˇ.1 C ˛B /z�1 C z�2

1 � ˇ.1 C ˛B /z�1 C ˛Bz�2
(76)
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Figure 26: A parametrically tunable second-order peak filter for boostand cut.

is a second-order allpass transfer function obtained by applying the lowpass-to-bandpass transformation
of Eq. (9.47) of Text to the first-order allpass transfer function A.B/.z/ of Eq. (63). Here, the parameter
˛B is now related to the 3-dB bandwidthBw of the bandpass response through

˛B D 1 � tan.BwT=2/

1 C tan.BwT=2/
: (77)

Likewise, the transfer functionG.C /
BP .z/ of a second-order peak filter for cut is obtained by applying

the lowpass-to-bandpass transformation to the lowpass shelving filter for cut of Eq. (66), resulting in

G
.C /
BP .z/ D G

.C /
LP .z/

ˇ

ˇ

ˇ

z�1!�z�1
�

z�1Cˇ

1Cˇz�1

� D K
2

Œ1 � A2C .z/� C 1
2
Œ1 C A2C .z/�: (78)

In Eq. (78), the center angular frequency!o; where the bandstop response dips, is related to the parameter
ˇ through Eq. (75) and

A2C .z/ D ˛C � ˇ.1 C ˛C /z�1 C z�2

1 � ˇ.1 C ˛C /z�1 C ˛C z�2
(79)

is a second-order allpass transfer function obtained by applying the lowpass-to-bandpass transformation
of Eq. (9.56) to the first-order allpass transfer functionA.C /.z/ of Eq. (66). Here, the parameter̨C is
now related to the 3-dB bandwidthBw of the bandstop response through

˛C D K � tan.BwT=2/

K C tan.BwT=2/
: (80)

Since bothG.B/
BP .z/ andG

.C /
BP .z/ are identical in form, the digital filter structure of Figure26 can be

employed for both boost and cut, except for boostA2.z/ D A2B .z/ and for cutA2.z/ D A2C .z/.
It follows from the above discussion that the peak or the dip of the gain response occurs at the fre-

quency!o, which is controlled independently by the parameterˇ according to Eq. (75), and the 3-dB
bandwidthBw of the gain response is determined solely by the parameter˛B of Eq. (77) for boost or by
the parameter̨C of of Eq. (80) for cut. Moreover, the height of the peak of the magnitude response for
boost is given byK D G

.B/
BP .ej!o/ and the height of the dip of the magnitude response for cut is given

by K D G
.C /
BP .ej!o/. Figures27(a), (b), and (c) show the gain responses of the second-orderpeak filter

obtained by varying the parametersK, !o, andBw .
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Figure 27: Gain responses of the second-order peak filter (a) for various values of the center frequency!o; with
Bw D 0:1�; T D 1, andK D 10 for boost andK D 0:1 for cut; (b) for various values of the parameterK; with
!o D 0:45�; Bw D 0:1�, andT D 1; and (c) for various values of the parameterBw ; with !0 D 0:45�; T D 1 and
K D 10 for boost andK D 0:1 for cut.

Higher-Order Equalizers

A graphic equalizer with tunable gain response can be built using a cascade of first-order and second-order
equalizers with external control of the maximum gain valuesof each section in the cascade. Figure28(a)
shows the block diagram of a cascade of one first-order and three second-order equalizers with nominal
frequency response parameters as indicated. Figure28(b) shows its gain response for some typical values
of the parameterK (maximum gain values) of the individual sections.

6 Digital Music Synthesis

As mentioned in Section 1.4.4 of Text that there are basically four methods of musical sound synthesis: (1)
wavetable synthesis, (2) spectral modeling synthesis, (3) nonlinear synthesis, and (4)physical modeling
synthesis.27 28

27R. Rabenstein and L. Trautmann, Digital sound synthesis by physical modeling, InProc. 2nd International Symp. on Image
and Signal Processing and Analysis, pages 12–23, Pula, Croatia, June 2001.

28J.O. Smith III, Viewpoints on the history of digital synthesis, In Proc. International Computer Music Conference, pages 1–10,
Montreal, Que., Canada, October 1991.
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Figure 28: (a) Block diagram of a typical graphic equalizer and (b) its gain response for the section parameter
values shown.

A detailed discussion of all these methods is beyond the scope of this book. In this section, we outline
a simple wavetable synthesis-based method for generating the sounds of plucked-string instruments.29

The basic idea behind the wavetable synthesis method is to store one period of a desired musical tone
and repeat it over and over to generate a periodic signal. Such a signal can be generated by running the
IIR digital filter structure of Figure13(a) with specified initial conditions, calledwavetable,stored in the
delay registerz�R and with no input. Mathematically, the generated periodic note can be expressed as

yŒn� D yŒn � R�; (81)

whereR, called thewavetable length,is the period. The frequency of the tone isFT =R, whereFT is the
sampling frequency. Usually, samples of simple waveforms are used as initial conditions.

A simple modification of the algorithm has been used to generate plucked-string tones. The modified
algorithm is given by

yŒn� D ˛R

2
.yŒn � R� C yŒn � R � 1�/: (82)

The correspondingplucked-string filterstructure is shown in Figure29(a). It should be noted that this
structure has been derived from the IIR filter structure of Figure13(a) by inserting a lowpass filterG.z/

consisting of a 2-point moving average filter in cascade witha gain block̨ R in the feedback path.
The initial sound of a plucked guitar string contains many high-frequency components. To simulate

this effect, the plucked-string filter structure is run withzero input and with zero-mean random numbers
initially stored in the delay blockz�R. The high-frequency components of the stored data get repeatedly
lowpass filtered byG.z/ as they circulate around the feedback loop of the filter structure of Figure29(a)
and decay faster than the low-frequency components. Since the 2-point moving average filter has a group
delay of 1

2
samples, the pitch period of the tone isR C 1

2
samples.

It is instructive to examine the gain response of the plucked-string filter.30 The transfer function of the

29K. Karplus and A. Strong, Digital synthesis of plucked-string and drum timbres,Computer Music Journal, vol. 7, pp. 43–55,
Summer 1983.

30K. Steiglitz, A Digital Signal Processing Primer, Addison Wesley, Menlo Park CA, 1996.
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Figure 29: (a) Basic plucked-string filter structure and (b) its gain response forR D 20 and˛ D 0:99.
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Figure 30: Modified plucked-string filter structure.

the filter structure of Fig.29(a) is given by

H.z/ D 1

1 � ˛R

2
.1 C z�1/z�R

: (83)

As the loop delay is 20.5 samples, the resonance frequenciesare expected to occur at integer multiples of
the pitch frequencyFT =20:5, whereFT is the sampling frequency. It can be seen from the gain response
plot shown in Figure29(b) for R D 20 and˛ D 0:99, the resonance peaks occur at frequencies very close
to the expected values. In addition, the amplitudes of the peaks decrease with increasing frequencies as
desired. Moreover, the widths of the resonance peaks increase with increasing frequency, as expected.

For better control of the pitch frequency, an allpass filterA.z/ is inserted in the feedback loop, as
indicated in Figure30.31 The fractional group delay of the allpass filter can be adjusted to tune the
overall loop delay of the modified structure. A detailed discussion on the design of the modified plucked-
string filter structure for the generation of a sound with a given fundamental frequency can be found in
Steiglitz.30

7 Discrete-Time Analytic Signal Generation

As discussed in Section??, an analytic continuous-time signal has a zero-valued spectrum for all nega-
tive frequencies. Such a signal finds applications in single-sideband analog communication systems and
analog frequency-division multiplex systems. A discrete-time signal with a similar property finds applica-
tions in digital communication systems and is the subject ofthis section. We illustrate here the generation
of an analytic signalyŒn� from a discrete-time real signalxŒn� and describe some of its applications.

31D.A. Jaffe and J.O. Smith, Extensions of the Karplus-Strongplucked-string algorithm,Computer Music Journal, vol. 9, pp.
26–23, 1983.
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Figure 31: (a) Frequency response of the discrete-time filter generating an analytic signal and (b) half-band lowpass
filter.

Now, the Fourier transformX.ej!/ of a real signalxŒn�, if it exists, is nonzero for both positive and
negative frequencies. On the other hand, a signalyŒn� with a single-sided spectrumY.ej!/ that is zero
for negative frequencies must be a complex signal. Considerthe complex analytic signal

yŒn� D xŒn� C j OxŒn�; (84)

wherexŒn� and OxŒn� are real. Its Fourier transformY.ej!/ is given by

Y.ej!/ D X.ej!/ C j OX.ej!/; (85)

where OX.ej!/ is the Fourier transform ofOxŒn�. Now,xŒn� and OxŒn� being real, their corresponding Fourier
transforms are conjugate symmetric; that is,X.ej!/ D X�.e�j!/ and OX.ej!/ D OX�.e�j!/. Hence, from
Eq. (85), we obtain

X.ej!/ D 1
2

�

Y.ej!/ C Y �.e�j!/
�

; (86a)

j OX.ej!/ D 1
2

�

Y.ej!/ � Y �.e�j!/
�

: (86b)

Since, by assumption,Y.ej!/ D 0 for �� � ! < 0, we obtain from Eq. (86a)

Y.ej!/ D
�

2X.ej!/; 0 � ! < �,
0; �� � ! < 0.

(87)

Thus, the analytic signalyŒn� can be generated by passingxŒn� through a linear discrete-time system, with
a frequency responseH.ej!/ given by

H.ej!/ D
�

2; 0 � ! < � ,
0; �� � ! < 0,

(88)

as indicated in Figure31(a).

7.1 The Discrete-Time Hilbert Transformer

We now relate the imaginary partOxŒn� of the analytic signalyŒn� to its real partxŒn�. From Eq. (86b), we
get

OX.ej!/ D 1
2j

�

Y.ej!/ � Y �.e�j!/
�

: (89)

For 0 � ! < �, Y.e�j!/ D 0, and for�� � ! < 0, Y.ej!/ D 0. Using this property and Eq. (87) in
Eq. (89), it can be easily shown that

OX.ej!/ D
�

�jX.ej!/; 0 � ! < �,
jX.ej!/; �� � ! < 0.

(90)
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Figure 32: Generation of an analytic signal using a Hilbert transformer.

Thus, the imaginary partOxŒn� of the analytic signalyŒn� can be generated by passing its real partxŒn�

through a linear discrete-time system, with a frequency responseHHT.ej!/ given by

HHT.ej!/ D
�

�j; 0 � ! < �,
j; �� � ! < 0.

(91)

The linear system defined by Eq. (91) is usually referred to as the idealHilbert transformer. Its output
OxŒn� is called theHilbert transformof its inputxŒn�. The basic scheme for the generation of an analytic
signalyŒn� D yreŒn� C jyimŒn� from a real signalxŒn� is thus as indicated in Figure32. Observe that
ˇ

ˇHHT.ej!/
ˇ

ˇ D 1 for all frequencies and has a� 90-degree phase-shift for0 � ! < � and aC 90-
degree phase-shift for�� � ! < 0. As a result, an ideal Hilbert transformer is also called a90-degree
phase-shifter.

The impulse responsehHTŒn� of the ideal Hilbert transformer is obtained by taking the inverse Fourier
transform ofHHT.ej!/ and can be shown to be

hHTŒn� D
�

0; for n even,
2

�n
; for n odd.

(92)

Since the ideal Hilbert transformer has a two-sided infinite-length impulse response defined for�� <

n < �, it is an unrealizable system. Moreover, its transfer function HHT .z/ exists only on the unit circle.
We describe later two approaches for developing a realizable approximation.

7.2 Relation with Half-Band Filters

Consider the filter with a frequency responseG.ej!/ obtained by shifting the frequency responseH.ej!/

of Eq. (88) by �=2 radians and scaling by a factor1
2

(see Figure31):

G.ej!/ D 1
2
H.ej.!C�=2// D

�

1; 0 < j!j < �
2

,
0; �

2
< j!j < �. (93)

From our discussion in Section 13.6.2 of Text, we observe that G.ej!/ is a half-band lowpass filter.
Because of the relation betweenH.ej!/ of Eq. (88) and the real coefficient half-band lowpass filter
G.ej!/ of Eq. (93), the filterH.ej!/ has been referred to as acomplex half-band filter.32

7.3 Design of the Hilbert Transformer

It also follows from the above relation that a complex half-band filter can be designed simply by shifting
the frequency response of a half-band lowpass filter by�=2 radians and then scaling by a factor 2. Equiv-
alently, the relation between the transfer functions of a complex half-band filterH.z/ and a real half-band

32P.A. Regalia, Special filter designs, In S.K. Mitra and J.F. Kaiser, editors,Handbook for Digital Signal Processing, chapter 13,
pages 967–980. Wiley-Interscience, New York, NY, 1993.
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Figure 33: FIR realization of a complex half-band filter.

lowpass filterG.z/ is given by
H.z/ D j2G.�jz/: (94)

Three methods of the design of the real half-band filter have been presented in Section 13.6 of Text. We
adopt two of these methods here for the design of complex half-band filters.

FIR Complex Half-Band Filter

Let G.z/ be the desired FIR real half-band linear-phase lowpass filter of even degreeN; with the passband
edge at!p , stopband edge at!s , and passband and stopband ripples ofıp, with !p C !s D �. The half-
band filterG.z/ is then designed by first designing a wide-band linear-phasefilter F.z/ of degreeN=2

with a passband from 0 to2!p, a transition band from2!p to �, and a passband ripple of2ı. The desired
half-band filterG.z/ is then obtained by forming

G.z/ D 1
2

�

z�N=2 C F.z2/
�

: (95)

Substituting Eq. (95) in Eq. (94), we obtain

H.z/ D j
h

.�jz/�N=2 C F.�z2/
i

D z�N=2 C jF.�z2/: (96)

An FIR implementation of the complex half-band filter based on the above decomposition is indicated in
Figure33. The linear-phase FIR filterF.�z2/ is thus an approximation to a Hilbert transformer.

We illustrate the above approach in Example8.

EXAMPLE 8 FIR Complex Half-Band Filter Design

Using MATLAB , we design a wide-band FIR filterF.z/ of degree13 with a passband from0 to 0.85 �

and an extremely small stopband from0.9 � to �. We use the functionremez with a magnitude
vectorm = [1 1 0 0] . The weight vector used to weigh the passband and the stopband is wt =
[2 0.05] . The magnitude responses of the wide-band filterF.z/ and the Hilbert transformerF.�z2/

are shown in Figures34(a) and (b).

The FIR Hilbert transformer can be designed directly using the functionremez . Example9 illustrates
this approach.

EXAMPLE 9 Direct Design of FIR Complex Half-Band Filter Using MATLAB

We design a 26th-order FIR Hilbert transformer with a passband from 0:1� to 0:9�. It should be
noted that for the design of a Hilbert transformer, the first frequency point in the vectorf containing
the specified bandedges cannot be a0. The magnitude response of the designed Hilbert transformer
obtained using the program statementb =remez(26, [0.1 0.9], [1 1], ’Hilbert’) is
indicated in Figure35.
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Figure 34: Magnitude responses of (a) the wide-band FIR filterF.z/ and (b) the approximate Hilbert transformer
F.�z2/.
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Figure 35: The magnitude response of the Hilbert transformer designeddirectly using MATLAB .

It should be noted that due to numerical round-off problems,unlike the design of Example8, the odd
impulse response coefficients of the Hilbert transformer here are not exactly zero.

IIR Complex Half-Band Filter

We outlined in Section 13.6.5 of Text a method to design stable IIR real coefficient half-band filters of
odd order in the form33

G.z/ D 1
2
ŒA0.z2/ C z�1

A1.z2/�; (97)

whereA0.z/ andA1.z/ are stable allpass transfer functions. Substituting Eq. (97) in Eq. (94), we there-
fore arrive at

H.z/ D A0.�z2/ C jz�1
A1.�z2/: (98)

A realization of the complex half-band filter based on the above decomposition is thus as shown in Fig-
ure36.

We illustrate the above approach to Hilbert transformer design in Example10.

33P.P. Vaidyanathan, P.A. Regalia, and S.K. Mitra, Design of doubly-complementary IIR digital filters using a single complex
allpass filter, with multirate applications,IEEE Trans. on Circuits and Systems, vol. CAS-34, pp. 378–389, April 1987.
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Figure 36: IIR realization of a complex half-band filter.
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Figure 37: (a) Gain response of the complex half-band filter (normalized to 0 dB maximum gain) and (b) phase
difference between the two allpass sections of the complex half-band filter.

EXAMPLE 10 IIR Complex Half-Band Filter Design

In Example 13.24, we designed a real half-band elliptic filter with the following frequency response
specifications:!s D 0:6� and ıs D 0:016. The transfer function of the real half-band filterG.z/

can be expressed as in Eq. (97), where the transfer functions of the two allpass sectionsA0.z2/ and
A1.z2/ are given in Eq. (13.116). The gain response of the complex half-band filter H.z/ obtained
using Eq. (98) is sketched in Figure37(a). Figure37(b) shows the phase difference between the two
allpass functionsA0.�z2/ andz�1A1.�z2/ of the complex half-band filter. Note that, as expected,
the phase difference is90 degrees for most of the positive frequency range and270 degrees for most of
the negative frequency range. In plotting the gain responseof the complex half-band filter and the phase
difference between its constituent two allpass sections, the M-file freqz(num,den,n,’whole’)
has been used to compute the pertinent frequency response values over the whole normalized frequency
range from0 to 2�.

7.4 Single-Sideband Modulation

For efficient transmission over long distances, a real low-frequency band-limited signalxŒn�, such as
speech or music, is modulated by a very high frequency sinusoidal carrier signal cos!cn, with the carrier
frequency!c being less than half of the sampling frequency. The spectrumV.ej!/ of the resulting signal
vŒn� D xŒn� cos!cn is given by

V.ej!/ D 1
2

h

X.ej.!�!c// C X.ej.!C!c//
i

: (99)

As indicated in Figure38, if X.ej!/ is band-limited to!M , the spectrumV.ej!/ of the modulated signal
vŒn� has a bandwidth of2!M centered aṫ !c . By choosing widely separated carrier frequencies, one
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Figure 38: Spectra of a real signal and its modulated version. (Solid lines represent the real parts, and dashed lines
represent the imaginary parts.)

can modulate a number of low-frequency signals to high-frequency signals, combine them by frequency-
division multiplexing, and transmit over a common channel.The carrier frequencies are chosen appro-
priately to ensure that there is no overlap in the spectra of the modulated signals when combined by
frequency-division multiplexing. At the receiving end, each of the modulated signals is then separated by
a bank of bandpass filters of center frequencies corresponding to the different carrier frequencies.

It is evident from Figure38 that, for a real low-frequency signalxŒn�, the spectrum of its modulated
versionvŒn� is symmetric with respect to the carrier frequency!c . Thus, the portion of the spectrum in
the frequency range from!c to .!c C !M /, called theupper sideband, has the same information content
as the portion in the frequency range from.!c � !M / to !c , called thelower sideband. Hence, for a
more efficient utilization of the channel bandwidth, it is sufficient to transmit either the upper or the lower
sideband signal. A conceptually simple way of eliminating one of the sidebands is to pass the modulated
signalvŒn� through a sideband filter whose passband covers the frequency range of one of the sidebands.

An alternative, often preferred, approach for single-sideband signal generation is by modulating the
analytic signal whose real and imaginary parts are, respectively, the real signal and its Hilbert transform.
To illustrate this approach, letyŒn� D xŒn�Cj OxŒn�; where OxŒn� is the Hilbert transform ofxŒn�. Consider

sŒn� D yŒn�ej!c n D .yreŒn� C jyimŒn�/ .cos!cn C j sin!cn/

D .xŒn� cos!cn � OxŒn� sin!cn/

C j .xŒn� sin!cn C OxŒn� cos!cn/ : (100)

From Eq. (100), the real and imaginary parts ofsŒn� are thus given by

sreŒn� D xŒn� cos!cn � OxŒn� sin!cn; (101a)

simŒn� D xŒn� sin!cn C OxŒn� cos!cn: (101b)

Figure39 shows the spectra ofxŒn�, OxŒn�, yŒn�, sŒn�, sreŒn�, andsimŒn�. It therefore follows from these
plots that a single-sideband signal can be generated using either one of the modulation schemes described
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by Eqs. (101a) and (101b), respectively. A block diagram representation of the scheme of Eq. (101a) is
sketched in Figure40.

8 Signal Compression

As mentioned earlier, signals carry information, and the objective of signal processing is to preserve the
information contained in the signal and extract and manipulate it when necessary. Most digital signals
encountered in practice contain a huge amount of data. For example, a gray-level image of size512 � 512

with 8-bits per pixel contains.512/2 � 8 D 2; 097; 152 bits. A color image of the same size contains 3
times as many bits. For efficient storage of digital signals,it is often necessary to compress the data into a
smaller size requiring significantly fewer number of bits. Asignal in compressed form also requires less
bandwidth for transmission. Roughly speaking, signal compression is concerned with the reduction of the
amount of data, while preserving the information content ofthe signal with some acceptable fidelity.

Most practical signals exhibitdata redundancy,as they contain some amount of data with no relevant
information. Three types of data redundancy are usually encountered in practice:coding redundancy,
intersample redundancy, andpsychovisual redundancy.34 Signal compression methods exploit one or
more of these redundancies to achieve data reduction.

A signal coding system consists of an encoder and a decoder. The input to the encoder is the signalx to
be compressed, and its output is the compressed bit streamd. The decoder performs the reverse operation.
Its input is the compressed bit streamd developed by the encoder, and its outputOx is a reasonable replica
of the original input signal of the encoder. The basic components of the encoder and the decoder are
shown in Figure41.

Theenergy compressionblock transforms the input sequencex into another sequencey with the same
total energy, while packing most of the energy in very few of samplesy. Thequantizerblock develops an
approximate representation ofy for a given level of accuracy in the form of an integer-valuedsequenceq
by adjusting the quantizer step size to control the trade-off between distortion and bit rate. Theentropy
codingblock uses variable-length entropy coding to encode the integers in the sequenceq into a binary
bitstreamd; with the aim of minimizing the total number of bits ind by making use of the statistics of the
class of samples inq.

Theentropy decodingblock regenerates the integer-valued sequenceq from the binary bit streamd.
The inverse quantizerdevelopsOy, a best estimate ofy from q. Finally, thereconstructionblock develops
Ox, the best approximation of the original input sequencex from Oy.

The signal compression methods can be classified into two basic groups: losslessand lossy. In the
lossless compression methods, no information is lost due tocompression, and the original signal can be
recovered exactly from the compressed data by the decoder. On the other hand, in the lossy compression
methods, some amount of information (usually less relevant) is lost, due to compression and the signal
reconstructed by the decoder is not a perfect replica of the original signal but is still an acceptable ap-
proximation for the application at hand. Naturally, the latter method can result in a significant reduction
in the number of bits necessary to represent the signal and isconsidered here. Moreover, for conciseness,
we discuss image compression methods that exploit only the coding redundancy. A detailed exposition of
compression methods exploiting all types of data redundancies is beyond the scope of this book.

34R.C. Gonzalez and P. Wintz,Digital Image Processing, Second Edition, Prentice-Hall, Upper Saddle River NJ, 2002.
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Figure 41: The block diagram representation of the signal compressionsystem.

8.1 Coding Redundancy

We assume that each sample of the discrete-time signalfxŒn�g is a random variableri taking one ofQ
distinct values with a probabilitypi ; 0 � i � Q � 1, wherepi � 1 and

PQ�1
iD0 pi D 1. Each possible

value ri is usually called asymbol. The probabilitypi of each symbolri can be estimated from the
histogram of the signal. Thus, if the signal contains a totalof N samples, withmi denoting the total
number of samples taking the valueri , then

pi D mi

N
; 0 � i � Q � 1: (102)

Let bi denote the length of thei -th codeword, that is, the total number of bits necessary to represent
the value of the random variableri . A measure of the coding redundancy is then given by the average
number of bits needed to represent each sample of the signalfxŒn�g:

Bav D
Q�1
X

iD0

bi pi bits: (103)

As a result, the total number of bits required to represent the signal isN � Bav.

8.2 Entropy

The goal of the compression method is to reduce the volume of data while retaining the information
content of the original signal with some acceptable fidelity. The information content represented by a
symbol can be informally related to its unexpectedness; that is, if a symbol that arrives is the one that was
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expected, it does not convey very much information. On the other hand, if an unexpected symbol arrives,
it conveys much more information. Thus, the information content of a particular symbol can be related to
its probability of occurrence, as described next.

For a discrete-time sequencefxŒn�g with samples taking one ofQ distinct symbolsri with a prob-
ability pi ; 0 � i � Q � 1, a measure of the information contentIi of the i -th symbolri is defined
by35

Ii D � log2 pi : (104)

It follows from the above definition thatIi � 0. Moreover, it also can be seen thatIi is very large when
pi is very small.

A measure of the average information content of the signalfxŒn�g is then given by itsentropy,which
is defined by

Hx D
Q�1
X

iD0

pi Ii D �
Q�1
X

iD0

pi log2 pi bits=symbol: (105)

The coding redundancy is defined as the difference between the actual data rate and the entropy of a data
stream.

8.3 A Signal Compression Example 36

We now consider the compression of a gray level image to illustrate the various concepts introduced earlier
in this section. For the energy compression stage, we make use of the Haar wavelets of Section 14.6.2.
Since the image is a two-dimensional sequence, the wavelet decomposition is first applied row-wise and
then column-wise. Applying the Haar transformH to the input imagex, first row-wise and then column-
wise, we get

y D HxHT ; (106)

where

H D 1p
2

�

1 1

1 �1

�

: (107)

To understand the effect of the decomposition on the image, consider a2 � 2 two-dimensional sequence
given by

x D
�

a b

c d

�

: (108)

Then,

y D 1
2

�

a C b C c C d a � b C c � d

a C b � c � d a � b � c C d

�

: (109)

The elementa C b C c C d at the top left position ofy is the 4-point average ofx and therefore contains
only the vertical and horizontal low-frequency componentsof x. It is labeled as theLL part of x. The
elementa�b Cc �d at the top right position ofy is obtained by forming the differences of the horizontal
components and the sum of the vertical components and hence contains the vertical low- and horizontal
high-frequency components. It is labeled as theHL part ofx. The elementa C b � c � d at the bottom
left position ofy is obtained by forming the sum of the horizontal components and the differences of the

35A.K. Jain,Fundamentals of Digital Image Processing, Prentice Hall, Englewood Cliffs NJ, 1989.
36Portions of this section have been adapted from N. Kingsbury, Image Coding Course Notes, Department of Engineering, Uni-

versity of Cambridge, Cambridge, U.K., July 13, 2001, by permission of the author.



48 1: Applications of Digital Signal Processing

vertical components and hence contains the horizontal low-and vertical high-frequency components. It
is labeled as theLH part of x. Finally, the elementa � b � c C d at the bottom right is obtained by
forming the differences between both the horizontal and vertical components and therefore contains only
the vertical and horizontal high-frequency components ofx. It is labeled as theHH part ofx.

Applying a one-level Haar wavelet decomposition to the image “Goldhill” of Figure 42(a), down-
sampling the outputs of all filters by a factor-of-2 in both horizontal and vertical directions, we arrive at
the four subimages shown in Figure42(b). The original image is of size512 � 512 pixels. The subimages
of Figure42(b) are of size256�256 pixels each. The total energies of the subimages and their percentages
of the total energy of all subimages are now as follows:

LL: HL: LH: HH:
3919:91 � 106 6:776 � 106 7:367 � 106 1:483 � 106

99:603 % 0:172 % 0:187 % 0:038 %

The sum of the energies of all subimages is equal to3935:54 � 106, which is also the total energy
of the original image of Figure42(a). As can be seen from the above energy distribution data and Fig-
ure42(b), theLL subimage contains most of the energy of the original image, whereas, theHH subimage
contains least of the energy. Also, theHL subimage has mostly the near-horizontal edges, whereas the
LH subimage has mostly the near-vertical edges.

To evaluate the entropies, we use uniform scalar quantizersfor all signals with a quantization step size
Q D 15. The entropy of the original image computed from its histogram, after compression with Q = 15,
is Hx D 3:583 bits/pixel. The entropies of the sub-images after a one-level Haar decomposition are as
given below:

LL: HL: LH: HH:
4:549=4 1:565=4 1:375=4 0:574=4

D 1:1370 D 0:3911 0:3438 0:1436

The entropy of the wavelet representation isHy D 2:016 bits/pixel, obtained by adding the entropies
of the subimages given above. Hence, the compression ratio is 1.78-to-1.0. Figures43(a) and (b) show,
respectively, the reconstructed “Goldhill” image after direct quantization of the original pixels and after
quantization of the wavelet coefficients.

A commonly used measure of the quality of the reconstructed image compared with the original image
is thepeak-signal-to-noise ratio(PSNR). LetxŒm; n� denote the.m; n/th pixel of an original imagex of
sizeM � N; and,yŒm; n� denote the.m; n/th pixel of the reconstructed imagey of the same size, with
8-bits per pixel. Then, the PSNR is defined by

PSNRD 20 log10

�

255

RMSE

�

dB; (110)

where RMSE is theroot mean square error,which is the square root of themean square error(MSE),
given by

MSE D
PM

mD1

PN
nD1.x2Œm; n� � y2Œm; n�/

MN
: (111)

The PSNR of the reconstructed image of Figure43(a) is 35.42 dB and that of Figure43(b) is 35.72 dB.
We next apply a two-level Haar wavelet decomposition to “Goldhill” image. The process is equivalent

to applying a one-level decomposition to theLL-subimage of Figure43(b). Figure44(a) shows the seven
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Figure 42: (a) Original “Goldhill” image and (b) subimages after one-level Haar wavelet decomposition.

(a) (b)

Figure 43: Reconstructed “Goldhill” image: (a) after direct quantization of the original pixels and (b) after
quantization of the wavelet coefficients.

subimages. The subimage at the top left is of size128 � 128 and contains only the low frequencies and
is labeledLLL. The remaining 3 subimages obtained after the second-leveldecomposition are labeled
accordingly.

The total energies of the four subimages of size128 � 128 at the top left corner and their percentages
of the total energy of all subimages are now as follows:

LLL: LHL: LLH: LHH:
3898:26 � 106 9:412 � 106 10:301 � 106 1:940 � 106

99:053 % 0:239 % 0:262 % 0:049 %

The total energies of the remaining three subimages of size256 � 256 at the top right and bottom left



50 1: Applications of Digital Signal Processing

(a) (b)

Figure 44: (a) Subimages after a two-level Haar wavelet decompositionand (b) reconstructed image after
quantization of the two-level wavelet coefficients.

and right corners remain the same as given earlier. The sum ofthe energies of all subimages is again
equal to3935:54 � 106. The entropy of the wavelet representation after a two-level decomposition is now
Hy D 1:620 bits/pixel, obtained by adding the entropies of the subimages given above and is seen to
be much smaller than that obtained after a one-level decomposition. The compression ratio is 2.2-to-1.0.
Figure 44(b) shows the reconstructed “Goldhill” image after quantization of the wavelet coefficients at
the second level. The PSNR of the reconstructed image is now 35.75 dB.

The compression ratio advantage of the wavelet decomposition is a consequence of the entropy dif-
ference between the quantization of the image in the space domain and the separate quantization of each
subimage. The wavelet decomposition allows for an entropy reduction since most of the signal energy is
allocated to low-frequency subimages with a smaller numberof pixels. If the quantization step does not
force the entropy reduction to be very large, then the wavelet-reconstructed image can still have better
quality than that obtained from space-domain coding, whichcan seen from the compression examples
given in Figures43and44.

In order to exploit the entropy of the image representation after quantization, a lossless source coding
scheme such as Huffman or arithmetic coding is required.37 The design of these codes goes beyond the
scope of this book and is therefore not included here. It is enough to state that lossless codes allow the
image in these examples to be compressed in practice at rates(number of bits/pixel) arbitrarily close to
those expressed by the entropy values that have been shown.

The histograms of all subimages, except the one with lowest frequency content (i.e., the top left
subimage), have only one mode and are centered at zero, with tails that usually decay with exponential
behavior. This means that many of the subimage pixels are assigned to the quantized interval centered
at zero. Run-length coding is a lossless coding scheme that encodes sequences of zeros by a special
symbol denoting the beginning of such sequences, followed by the length of the sequence.37 This different
representation allows for further reduction of the subimages entropy after the quantization, and thus, run-
length coding can be used to improve, without any loss of quality, the compression ratios shown in the
examples of this section.

37N.S. Jayant and P. Knoll,Digital Coding of Waveforms, Prentice Hall, Englewood Cliffs NJ, 1984.
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9 Transmultiplexers

In the United States and most other countries, the telephoneservice employs two types of multiplexing
schemes to transmit multiple low-frequency voice signals over a wide-band channel. In thefrequency-
division multiplex(FDM) telephone system, multiple analog voice signals are first modulated by single-
sideband (SSB) modulators onto several subcarriers, combined, and transmitted simultaneously over a
common wide-band channel. To avoidcross-talk, the subcarriers are chosen to ensure that the spectra of
the modulated signals do not overlap. At the receiving end, the modulated subcarrier signals are separated
by analog bandpass filters and demodulated to reconstruct the individual voice signals. On the other
hand, in thetime-division multiplex(TDM) telephone system, the voice signals are first converted into
digital signals by sampling and A/D conversion. The samplesof the digital signals are time-interleaved
by a digital multiplexer, and the combined signal is transmitted. At the receiving end, the digital voice
signals are separated by a digital demultiplexer and then passed through a D/A converter and an analog
reconstruction filter to recover the original analog voice signals.

The TDM system is usually employed for short-haul communication, while the FDM scheme is pre-
ferred for long-haul transmission. Until the telephone service becomes all digital, it is necessary to trans-
late signals between the two formats. This is achieved by thetransmultiplexer system discussed next.

The transmultiplexeris a multi-input, multi-output, multirate structure, as shown in Figure45. It is
exactly the opposite to that of theL-channel QMF bank of Figure 14.18 of Text and consists of anL-
channel synthesis filter bank at the input end, followed by anL-channel analysis filter bank at the output
end. To determine the input–output relation of the transmultiplexer, consider one typical path from the
kth input to thè th output as indicated in Figure46(a).38 A polyphase representation of the structure of
Figure45 is shown in Figure47(a). Invoking the identity of Section 13.4.5, we note that the structure
of Figure46(a) is equivalent to that shown in Figure46(b), consisting of an LTI branch with a transfer
functionFk`.z/ that is the zeroth polyphase component ofHk.z/G`.z/. The input–output relation of the

38P.P. Vaidyanathan.Multirate Systems and Filter Banks, Prentice Hall, Englewood Cliffs NJ, 1993.
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transmultiplexer is therefore given by

Yk.z/ D
L�1
X

`D0

Fk`.z/X`.z/; 0 � k � L � 1: (112)

Denoting

Y.z/ D ŒY0.z/ Y1.z/ � � � YL�1.z/�t ; (113a)

X.z/ D ŒX0.z/ X1.z/ � � � XL�1.z/�t ; (113b)

we can rewrite Eq. (112) as
Y.z/ D F.z/X.z/; (114)

whereF.z/ is anL � L matrix whose.k; `/th element is given byFk`.z/. The objective of the trans-
multiplexer design is to ensure thatyk Œn� is a reasonable replica ofxk Œn�. If yk Œn� contains contributions
from xr Œn� with r ¤ n, then there iscross-talkbetween these two channels. It follows from Eq. (114) that
cross-talk is totally absent ifF.z/ is a diagonal matrix, in which case Eq. (114) reduces to

Yk.z/ D Fkk.z/Xk.z/; 0 � k � L � 1: (115)

As in the case of the QMF bank, we can define three types of transmultiplexer systems. It is a phase-
preserving system ifFkk.z/ is a linear-phase transfer function for all values ofk. Likewise, it is a
magnitude-preserving system ifFkk.z/ is an allpass function. Finally, for a perfect reconstruction trans-
multiplexer,

Fkk.z/ D ˛kz�nk ; 0 � k � L � 1; (116)

wherenk is an integer and̨ k is a nonzero constant. For a perfect reconstruction system,yk Œn� D
˛kxk Œn � nk �.

The perfect reconstruction condition can also be derived interms of the polyphase components of
the synthesis and analysis filter banks of the transmultiplexer of Figure45, as shown in Figure47(a).39

Using the cascade equivalences of Figure 13.14, we arrive atthe equivalent representation indicated in
Figure47(b). Note that the structure in the center part of this figure is a special case of the system of
Figure45, whereG`.z/ D z�.L�1�`/ andHk.z/ D z�k , with `; k D 0; 1; : : : ; L � 1. Here the zeroth
polyphase component ofH`C1.z/G`.z/ is z�1 for ` D 0; 1; : : : ; L � 2, the zeroth polyphase component
of H0.z/GL�1.z/ is 1, and the zeroth polyphase component ofHk.z/G`.z/ is 0 for all other cases. As a
result, a simplified equivalent representation of Figure47(b) is as shown in Figure48.

The transfer matrix characterizing the transmultiplexer is thus given by

F.z/ D E.z/

�

0 1

z�1IL�1 0

�

R.z/; (117)

whereIL�1 is an.L�1/�.L�1/ identity matrix. Now, for a perfect reconstruction system,it is sufficient
to ensure that

F.z/ D dz�no IL; (118)

whereno is a positive integer. From Eqs. (117) and (118) we arrive at the condition for perfect recon-
struction in terms of the polyphase components as

R.z/E.z/ D dz�mo

�

0 IL�1

z�1 0

�

; (119)

39R.D. Koilpillai, T.Q. Nguyen, and P.P. Vaidyanathan, Some results in the theory of crosstalk-free transmultiplexers,IEEE Trans.
on Signal Processing, 39:2174–2183, October 1991.
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Figure 47: (a) Polyphase representation of theL-channel transmultiplexer and (b) its computationally efficient
realization.
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wheremo is a suitable positive integer.
It is possible to develop a perfect reconstruction transmultiplexer from a perfect reconstruction QMF

bank with analysis filtersH`.z/ and synthesis filtersG`.z/, with a distortion transfer function given by
T .z/ D dz�K , whered is a nonzero constant andK is a positive integer. It can be shown that a perfect
reconstruction transmultiplexer can then be designed using the analysis filtersH`.z/ and synthesis filters
z�RG`.z/, whereR is a positive integer less thanL such thatR C K is a multiple ofL: We illustrate this
approach in Example11.37

EXAMPLE 11 Design of a Perfect Reconstruction Transmultiplexer

Consider the perfect reconstruction analysis/synthesis filter bank of Example 14.8 with an input–output



54 1: Applications of Digital Signal Processing

FDM signal

104 kHz 108 kHz64 kHz60 kHz0

0 4 kHz

0 4 kHz

0 4 kHz

TDM signals

C
ha

nn
el

 1
2

C
ha

nn
el

 1
C

ha
nn

el
 2

Figure 49: Spectrums of TDM signals and the FDM signal.

relationyŒn� D 4xŒn � 2�. In this case, the analysis and synthesis filters are given by

H0.z/ D 1 C z�1 C z�2; H1.z/ D 1 � z�1 C z�2; H2.z/ D 1 � z�2;

G0.z/ D 1 C 2z�1 C z�2; G1.z/ D 1 � 2z�1 C z�2; G2.z/ D �2 C 2z�2:

Here,d D 4 andK D 2. We thus chooseR D 1 so thatR C K D 3. The synthesis filters of the
transmultiplexer are thus given byz�1G`.z/.

We now examine the productsz�1G`.z/Hk.z/, for `; k D 0; 1; 2, and determine their zeroth polyphase
components. Thus,

z�1G0.z/H0.z/ D z�1 C 3z�2 C 4z�3 C 3z�4 C z�5;

whose zeroth polyphase component is given by4z�1, and hence,y0Œn� D 4x0Œn � 1�. Likewise,

z�1G1.z/H1.z/ D z�1 � 3z�2 C 4z�3 � 3z�4 C z�5;

with a zeroth polyphase component4z�1; resulting iny1Œn� D 4x1Œn � 1�. Similarly,

z�1G2.z/H2.z/ D �2z�1 C 4z�3 � 2z�5;

whose zeroth polyphase component is again4z�1, implying y2Œn� D 4x2Œn � 1�. It can be shown that
the zeroth polyphase components for all other productsz�1G`.z/Hk.z/, with ` ¤ k, is 0, indicating a
total absence of cross-talk between channels.

In a typical TDM-to-FDM format translation, 12 digitized speech signals are interpolated by a factor
of 12, modulated by single-sideband modulation, digitallysummed, and then converted into an FDM
analog signal by D/A conversion. At the receiving end, the analog signal is converted into a digital signal
by A/D conversion and passed through a bank of 12 single-sideband demodulators whose outputs are
then decimated, resulting in the low-frequency speech signals. The speech signals have a bandwidth of
4 kHz and are sampled at an 8-kHz rate. The FDM analog signal occupies the band 60 kHz to 108 kHz,
as illustrated in Figure49. The interpolation and the single-sideband modulation canbe performed by
up-sampling and appropriate filtering. Likewise, the single-sideband demodulation and the decimation
can be implemented by appropriate filtering and down-sampling.
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10 Discrete Multitone Transmission of Digital Data

Binary data are normally transmitted serially as a pulse train, as indicated in Figure50(a). However, in or-
der to faithfully extract the information transmitted, thereceiver requires complex equalization procedures
to compensate for channel imperfection and to make full use of the channel bandwidth. For example, the
pulse train of Figure50(a) arriving at the receiver may appear as indicated in Figure50(b). To alleviate the
problems encountered with the transmission of data as a pulse train, frequency-division multiplexing with
overlapping subchannels has been proposed. In such a system, each binary digitar , r D 0; 1; 2; : : : ; N �1,
modulates a subcarrier sinusoidal signal cos.2�rt=T /, as indicated in Figure50(c), for the transmission
of the data of Figure50(a), and then the modulated subcarriers are summed and transmitted as one com-
posite analog signal. At the receiver, the analog signal is passed through a bank of coherent demodulators
whose outputs are tested to determine the digits transmitted. This is the basic idea behind the multicarrier
modulation/demodulation scheme for digital data transmission.

A widely used form of the multicarrier modulation is the discrete multitone transmission (DMT)
scheme in which the modulation and demodulation processes are implemented via the discrete Fourier
transform (DFT), efficiently realized using fast Fourier transform (FFT) methods. This approach leads to
an all-digital system, eliminating the arrays of sinusoidal generators and the coherent demodulators.4041

We outline here the basic idea behind the DMT scheme. Letfak Œn�g andfbkŒn�g, 0 � k � M � 1,
be twoM � 1 real-valued data sequences operating at a sampling rate ofFT that are to be transmitted.
Define a new set of complex sequencesf˛kŒn�g of lengthN D 2M according to

˛k Œn� D

8

ˆ

ˆ

<

ˆ

ˆ

:

a0Œn�; k D 0;

ak Œn� C jbkŒn�; 1 � k � N
2

� 1;

b0Œn�; k D N
2

;

aN �k Œn� � jbN �k Œn�; N
2

C 1 � k � N � 1:

(120)

We apply an inverse DFT, and the above set ofN sequences is transformed into another new set ofN

signalsfu`Œn�g; given by

u`Œn� D 1

N

N �1
X

kD0

˛kŒn�W �`k
N ; 0 � ` � N � 1; (121)

whereWN D e�j 2�=N . Note that the method of generation of the complex sequence set f˛kŒn�g ensures
that its IDFTfu`Œn�g will be a real sequence. Each of theseN signals is then upsampled by a factor of
N and time-interleaved, generating a composite signalfxŒn�g operating at a rate ofNFT that is assumed
to be equal to2Fc . The composite signal is converted into an analog signalxa.t/ by passing it through
a D/A converter, followed by an analog reconstruction filter. The analog signalxa.t/ is then transmitted
over the channel.

At the receiver, the received analog signalya.t/ is passed through an analog anti-aliasing filter and
then converted into a digital signalfyŒn�g by an S/H circuit, followed by an A/D converter operating at a
rate ofNFT D 2Fc. The received digital signal is then deinterleaved by a delay chain containingN � 1

unit delays, whose outputs are next down-sampled by a factorof N , generating the set of signalsfv`Œn�g.
40A. Peled and A. Ruiz, Frequency domain data transmission using reduced computational complexity algorithms, InProc. IEEE

International Conference on Acoustics, Speech and Signal Processing, pages 964–967, Denver CO, April 1980.
41J.M. Cioffi, A multicarrier primer, ANSI T1E1.4 Committee Contribution, Boca Raton FL, November 1991.
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Figure 50: (a) Serial binary data stream, (b) baseband serially transmitted signal at the receiver, and (c) signals
generated by modulating a set of subcarriers by the digits ofthe pulse train in (a).

Applying the DFT to theseN signals, we finally arrive atN signalsfˇkŒn�g

ˇk Œn� D
N �1
X

`D0

�`Œn�W `k
N ; 0 � k � N � 1: (122)

Figure51 shows schematically the overall DMT scheme. If we assume thefrequency response of the
channel to have a flat passband and assume the analog reconstruction and anti-aliasing filters to be ideal
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Figure 51: The DMT scheme: (a) transmitter and (b) receiver.

lowpass filters, then neglecting the nonideal effects of theD/A and the A/D converters, we can assume
yŒn� D xŒn�. Hence, the interleaving circuit of the DMT structure at thetransmitting end connected to the
deinterleaving circuit at the receiving end is identical tothe same circuit in the transmultiplexer structure
of Figure47(b) (with L D N ). From the equivalent representation given in Figure48, it follows that

vk Œn� D uk�1Œn � 1�; 0 � k � N � 2;

v0Œn� D uN �1Œn�; (123)

or, in other words,

ˇkŒn� D ˛k�1Œn � 1�; 0 � k � N � 2;

ˇ0Œn� D ˛N �1Œn�: (124)

Transmission channels, in general, have a bandpass frequency responseHch.f /; with a magnitude
response dropping to zero at some frequencyFc . In some cases, in the passband of the channel, the
magnitude response, instead of being flat, drops very rapidly outside its passband, as indicated in Fig-
ure52. For reliable digital data transmission over such a channeland its recovery at the receiving end, the
channel’s frequency response needs to be compensated by essentially a highpass equalizer at the receiver.
However, such an equalization also amplifies high-frequency noise that is invariably added to the data
signal as it passes through the channel.

For a large value of the DFT lengthN , the channel can be assumed to be composed of a series of
contiguous narrow-bandwidth bandpass subchannels. If thebandwidth is reasonably narrow, the corre-
sponding bandpass subchannel can be considered to have an approximately flat magnitude response, as
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Figure 52: Frequency response of a typical band-limited channel.

indicated by the dotted lines in Figure52, and the channel can be approximately characterized by a single
complex number given by the value of its frequency response at ! D 2�k=N . The values can be deter-
mined by first transmitting a known training signal of unmodulated carriers and generating the respective
channel frequency response samples. The real data samples are then divided by these complex numbers
at the receiver to compensate for channel distortion.

Further details on the performance of the above DMT scheme under nonideal conditions can be found
in the literature.39; 42; 43

11 Oversampling A/D Converter

For the digital processing of an analog continuous-time signal, the signal is first passed through a sample-
and-hold circuit whose output is then converted into a digital form by means of an A/D converter. How-
ever, according to the sampling theorem, discussed in Section 3.8.1 of Text, a band-limited continuous-
time signal with a lowpass spectrum can be fully recovered from its uniformly sampled version if it is
sampled at a sampling frequency that is at least twice the highest frequency contained in the analog sig-
nal. If this condition is not satisfied, the original continuous-time signal cannot be recovered from its
sampled version because of aliasing. To prevent aliasing, the analog signal is thus passed through an ana-
log anti-aliasing lowpass filter prior to sampling, which enforces the condition of the sampling theorem.
The passband cutoff frequency of the lowpass filter is chosenequal to the frequency of the highest signal
frequency component that needs to be preserved at the output. The anti-aliasing filter also cuts off all
out-of-band signal components and any high-frequency noise that may be present in the original analog
signal, which otherwise would alias into the baseband aftersampling. The filtered signal is then sampled
at a rate that is at least twice that of the cutoff frequency.

Let the signal band of interest be the frequency range0 � f � Fm. Then, the Nyquist rate is given
by FN D 2Fm. Now, if the sampling rateFT is the same as the Nyquist rate, we need to use before the
sampler an anti-aliasing lowpass filter with a very sharp cutoff in its frequency response, satisfying the
requirements as given by Eq. (A.35) in Appendix A of Text.44 This requires the design of a very high-
order anti-aliasing filter structure built with high-precision analog components, and it is usually difficult
to implement such a filter in VLSI technology. Moreover, sucha filter also introduces undesirable phase

42J.A.C. Bingham, Multicarrier modulation for data transmission: An idea whose time has come,IEEE Communications Maga-
zine, pages 5–14, May 1990.

43K. Shenoi,Digital Signal Processing in Telecommunication, Prentice Hall, Englewood Cliffs NJ, 1995.
44Recall thatFT D 1=T , whereT is the sampling period.
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distortion in its output. An alternative approach is to sample the analog signal at a rate much higher
than the Nyquist rate, use a fast low-resolution A/D converter, and then decimate the digital output of
the converter to the Nyquist rate. This approach relaxes thesharp cutoff requirements of the analog anti-
aliasing filter, resulting in a simpler filter structure thatcan be built using low-precision analog components
while requiring fast, more complex digital signal processing hardware at later stages. The overall structure
is not only amenable to VLSI fabrication but also can be designed to provide linear-phase response in the
signal band of interest.

The oversampling approach is an elegant application of multirate digital signal processing and is
increasingly being employed in the design of high-resolution A/D converters for many practical sys-
tems.45;46 In this section, we analyze the quantization noise performance of the conventional A/D con-
verter and show analytically how the oversampling approachdecreases the quantization noise power in
the signal band of interest.44 We then show that further improvement in the noise performance of an over-
sampling A/D converter can be obtained by employing a sigma-delta.˙�/ quantization scheme. For
simplicity, we restrict our discussion to the case of a basicfirst-order sigma-delta quantizer.

To illustrate the noise performance improvement property,consider ab-bit A/D converter operating
at FT Hz. Now, for a full-scale peak-to-peak input analog voltageof RFS, the smallest voltage step
represented byb bits is

�V D RFS

2b � 1
Š RFS

2b
: (125)

From Eq. (12.70) of Text, the rms quantization noise power�2
e of the error voltage, assuming a uniform

distribution of the error between��V=2 and�V=2, is given by

�2
e D .�V /2

12
: (126)

The rms noise voltage, given by�e, therefore has a flat spectrum in the frequency range from0 to FT =2.
The noise power per unit bandwidth, called thenoise density, is then given by

Pe;n D .�V /2=12

FT =2
D .�V /2

6FT

: (127)

A plot of the noise densities for two different sampling rates is shown in Figure53, where the shaded
portion indicates the signal band of interest. As can be seenfrom this figure, the total amount of noise in
the signal band of interest for the high sampling rate case issmaller than that for the low sampling rate
case. The total noise in the signal band of interest, called the in-band noise power, is given by

Ptotal D .RFS=2b/2

12
� Fm

FT =2
: (128)

It is interesting to compute the needed wordlengthˇ of the A/D converter operating at the Nyquist rate
in order that its total noise in the signal band of interest beequal to that of ab-bit A/D converter operating
at a higher rate. SubstitutingFT D 2Fm and replacingb with ˇ in Eq. (128), we arrive at

Ptotal D .RFS=2ˇ /2

12
D .RFS=2b/2

12
� Fm

FT =2
; (129)

45J.C. Candy and G.C. Temes. Oversampling methods for A/D and D/A conversion. In J.C. Candy and G.C. Temes, editors,
Oversampling Delta-Sigma Data Converters, pages 1–25, IEEE Press, New York NY, 1992.

46M.E. Frerking.Digital Signal Processing in Communication Systems, Van Nostrand Reinhold, New York NY, 1994.
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Figure 53: A/D converter noise density.
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Figure 54: Excess resolution as a function of the oversampling ratioM .

which leads to the desired relation

ˇ D b C 1

2
log2 M; (130)

whereM D FT =2Fm denotes theoversampling ratio(OSR). Thus,̌ � b denotes the increase in the
resolution of ab-bit converter whose oversampled output is filtered by an ideal brick-wall lowpass filter.
A plot of the increase in resolution as a function of the oversampling ratio is shown in Figure54. For
example, for an OSR ofM D 1000, an 8-bit oversampling A/D converter has an effective resolution
equal to that of a 13-bit A/D converter operating at the Nyquist rate. Note that Eq. (130) implies that the
increase in the resolution is1

2
-bit per doubling of the OSR.

We now illustrate the improvement in the noise performance obtained by employing a sigma-delta
.˙�/ quantization scheme. The sigma-delta A/D converter is shown in block-diagram form in Figure55
for convenience. This figure also indicates the sampling rates at various stages of the structure. It should
be noted here that the 1-bit output samples of the quantizer after decimation becomeb-bit samples at the
output of the sigma-delta A/D converter due to the filtering operations involvingb-bit multiplier coeffi-
cients of theM th-band digital lowpass filter.

Since the oversampling ratioM is typically very large in practice, the sigma-delta A/D converter is
most useful in low-frequency applications such as digital telephony, digital audio, and digital spectrum
analyzers. For example, Figure56 shows the block diagram of a typical compact disk encoding system
used to convert the input analog audio signal into a digital bit stream that is then applied to generate the
master disk.47 Here, the oversampling sigma-delta A/D converter employedhas a typical input sampling

47J.P.J. Heemskerk and K.A.S. Immink. Compact disc: System aspects and modulation.Philips Technical Review, 40(6):157–
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rate of 3175.2 kHz and an output sampling rate of 44.1 kHz.48

To understand the operation of the sigma-delta A/D converter of Figure55, we need to study the
operation of the sigma-delta quantizer shown in Figure57(a). To this end, it is convenient to use the
discrete-time equivalent circuit of Figure57(b), where the integrator has been replaced with an accumu-
lator.49 Here, the inputxŒn� is a discrete-time sequence of analog samples developing anoutput sequence
of binary-valued samplesyŒn�. From this diagram, we observe that, at each discrete instant of time, the
circuit forms the difference.�/ between the input and the delayed output, which is accumulated by a
summer.˙/ whose output is then quantized by a one-bit A/D converter, that is., a comparator.

Even though the input–output relation of the sigma-delta quantizer is basically nonlinear, the low-

165, 1982.
48J.J. Van der Kam. A digital “decimating” filter for analog-to-digital conversion of hi-fi audio signals.Philips Technical Review,

42:230–238, 1986.
49In practice, the integrator is implemented as a discrete-time switched-capacitor circuit.
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Figure 58: (a) Input and (b) output waveforms of the sigma-delta quantizer of Figure57(a) for a constant input.

frequency content of the inputxc.t/ can be recovered from the outputyŒn� by passing it through a digital
lowpass filter. This property can be easily shown for a constant input analog signalxa.t/ with a magnitude
less thanC1. In this case, the outputwŒn� of the accumulator is a bounded sequence with sample values
equal to either�1 or C1. This can happen only if the input to the accumulator has an average value of
zero. Or in other words, the average value ofwŒn� must be equal to the average value of the inputxŒn�:50

Examples12and13 illustrate the operation of a sigma-delta quantizer.

EXAMPLE 12 Sigma-Delta Quantization of a Constant Amplitude Signal

We first consider the operation for the case of a constant input signal using MATLAB . To this end,
we can use Program 11 in Section14. The plots generated by this program are the input and output
waveforms of the sigma-delta quantizer of Figure57(a) and are shown in Figure58. The program also
prints the average value of the output as indicated below:

Average value of output is =
0.8095

which is very close to the amplitude 0.8 of the constant input. It can be easily verified that the average
value of the output gets closer to the amplitude of the constant input as the length of the input increases.

EXAMPLE 13 Sigma-Delta Quantization of a Sinusoidal Signal

We now verify the operation of the sigma-delta A/D converterfor a sinusoidal input of frequency
0.01 Hz using MATLAB . To this end, we make use of the Program 12 in Section14. Because of
the short length of the input sequence, the filtering operation is performed here in the DFT domain.48

Figure59shows the input and output waveforms of the sigma-delta quantizer of Figure57(a) for a sinu-
soidal input. Figure60 depicts the lowpass filtered version of the output signal shown in Figure59(b).
As can be seen from these figures, the filtered output is nearlyan exact replica of the input.

It follows from Figure57(b) that the outputyŒn� of the quantizer is given by

yŒn� D wŒn� C eŒn�; (131)

where
wŒn� D xŒn� � yŒn � 1� C wŒn � 1�: (132)

50R. Schreier.Noise-Shaped Coding. PhD thesis, University of Toronto, Toronto Canada, 1991.
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Figure 59: Input and output waveforms of the sigma-delta quantizer of Figure57(a) with a sine wave input.
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Figure 60: The lowpass filtered version of the waveform of Figure59(b).

From Eqs. (131) and (132), we obtain, after some algebra,

yŒn� D xŒn� C .eŒn� � eŒn � 1�/; (133)

where the quantity inside the parentheses represents the noise due to sigma-delta modulation. The noise
transfer function is simplyG.z/ D .1 � z�1/. The power spectral density of the modulation noise is
therefore given by

Py.f / D
ˇ

ˇ

ˇ
G.ej 2�f T /

ˇ

ˇ

ˇ

2

Pe.f / D 4 sin2

�

2�f T

2

�

Pe.f /; (134)

where we have assumed the power spectral densityPe.!/ of the quantization noise to be the one-sided
power spectral density defined for positive frequencies only. For a random signal inputxŒn�, Pe.f / is
constant for all frequencies and is given by

Pe.f / D .�V /2=12

FT =2
: (135)

Substituting Eq. (135) in Eq. (134), we arrive at the power spectral density of the output noise, given by

Py.f / D 2

3

.�V /2

FT

sin2.�f T /: (136)

The noise-shaping provided by the sigma-delta quantizer issimilar to that encountered in the first-order
error-feedback structures of Section 9.10.1 and shown in Figure 9.42. For a very large OSR, as is usually
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the case, the frequencies in the signal band of interest are much smaller thanFT , the sampling frequency.
Thus, we can approximatePy.f / of Eq. (136) as

Py.f / Š 2
3

.�V /2

FT

.�f T /2 D 2
3
�2.�V /2T 3f 2; f << FT : (137)

From Eq. (137), the in-band noise power of the sigma-delta A/D converter is thus given by

Ptotal;sd D
Z Fm

0

Py.f / df D 2
3
�2.�V /2T 3

Z Fm

0

f 2 df D 2

9
�2.�V /2T 3.Fm/3: (138)

It is instructive to compare the noise performance of the sigma-delta A/D converter with that of a
direct oversampling A/D converter operating at a sampling rate ofFT with a signal band of interest from
dc toFm. From Eq. (129), the in-band noise power of the latter is given by

Ptotal;os D 1
6
.�V /2TFm: (139)

The improvement in the noise performance is therefore givenby

10 log10

�

Ptotal;os

Ptotal;sd

�

D 10 log10

�

3M 2

�2

�

D �5:1718 C 20 log10.M / dB; (140)

where we have usedM D FT =2Fm to denote the OSR. For example, for an OSR ofM D 1000, the
improvement in the noise performance using the sigma-deltamodulation scheme is about 55 dB. In this
case, the increase in the resolution is about 1.5 bits per doubling of the OSR.

The improved noise performance of the sigma-delta A/D converter results from the shape of
ˇ

ˇG.ej 2�f T /
ˇ

ˇ,
which decreases the noise power spectral density in-band.0 � f � Fm/; while increasing it outside the
signal band of interest.f > Fm/. Since this type of converter also employs oversampling, itrequires a
less stringent analog anti-aliasing filter.

The A/D converter of Figure55employs a single-loop feedback and is often referred to as a first-order
sigma-delta converter. Multiple feedback loop modulationschemes have been advanced to reduce the
in-band noise further. However, the use of more than two feedback loops may result in unstable operation
of the system, and care must be taken in the design to ensure stable operation.43

As indicated in Figure55, the quantizer output is passed through anM th-band lowpass digital filter
whose output is then down-sampled by a factor ofM to reduce the sampling rate to the desired Nyquist
rate. The function of the digital lowpass filter is to eliminate the out-of-band quantization noise and
the out-of-band signals that would be aliased into the passband by the down-sampling operation. As a
result, the filter must exhibit a very sharp cutoff frequencyresponse with a passband edge atFm. This
necessitates the use of a very high-order digital filter. In practice, it is preferable to use a filter with a
transfer function having simple integer-valued coefficients to reduce the cost of hardware implementation
and to permit all multiplication operations to be carried out at the down-sampled rate. In addition, most
applications require the use of linear-phase digital filters, which can be easily implemented using FIR
filters.

Further details on first- and higher-order sigma-delta converters can be found in Candy and Temes.41

12 Oversampling D/A Converter

As indicated earlier in Section 3.8 of Text, the digital-to-analog conversion process consists of two steps:
the conversion of input digital samples into a staircase continuous-time waveform by means of a D/A
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Figure 61: Block diagram representation of an oversampling sigma-delta D/A converter.

converter with a zero-order hold at its output, followed by an analog lowpass reconstruction filter. If the
sampling rateFT of the input digital signal is the same as the Nyquist rate, the analog lowpass reconstruc-
tion filter must have a very sharp cutoff in its frequency response, satisfying the requirements of Eq. (A.38)
in Appendix A of Text. As in the case of the anti-aliasing filter, this involves the design of a very high-
order analog reconstruction filter requiring high-precision analog circuit components. To get around the
above problem, here also an oversampling approach is often used, in which case a wide transition band
can be tolerated in the frequency response of the reconstruction filter allowing its implementation using
low-precision analog circuit components, while, requiring a more complex digital interpolation filter at
the front end.

Further improvement in the performance of an oversampling D/A converter is obtained by employing
a digital sigma-delta 1-bit quantizer at the output of the digital interpolator, as indicated in Figure61 for
convenience.51;52 The quantizer extracts the MSB from its input and subtracts the remaining LSBs, the
quantization noise, from its input. The MSB output is then fed into a 1-bit D/A converter and passed
through an analog lowpass reconstruction filter to remove all frequency components beyond the signal
band of interest. Since the signal band occupies a very smallportion of the baseband of the high-sample-
rate signal, the reconstruction filter in this case can have avery wide transition band, permitting its real-
ization with a low-order filter that, for example, can be implemented using a Bessel filter to provide an
approximately linear phase in the signal band.53

The spectrum of the quantized 1-bit output of the digital sigma-delta quantizer is nearly the same as
that of its input. Moreover, it also shapes the quantizationnoise spectrum by moving the noise power out
of the signal band of interest. To verify this result analytically, consider the sigma-delta quantizer shown
separately in Figure62. It follows from this figure that the input–output relation of the quantizer is given
by

yŒn� � eŒn� D xŒn� � eŒn � 1�;

or, equivalently, by
yŒn� D xŒn� C eŒn� � eŒn � 1�; (141)

whereyŒn� is the MSB of thenth sample of the adder output, andeŒn� is thenth sample of the quantization
noise composed of all bits except the MSB. From Eq. (141), it can be seen that the transfer function
of the quantizer with no quantization noise is simply unity,and the noise transfer function is given by
G.z/ D 1 � z�1, which is the same as that for the first-order sigma-delta modulator employed in the
oversampling A/D converter discussed in the previous section.

51J.C. Candy and A-N. Huynh. Double interpolation for digital-to-analog conversion.IEEE Trans. on Communications, COM-
34:77–81, January 1986.

52L.E. Larson and G.C. Temes. Signal conditioning and interface circuits. In S.K. Mitra and J.F. Kaiser, editors,Handbook for
Digital Signal Processing, chapter 10, pages 677–720. Wiley-Interscience, New York NY, 1993.

53See Section??.
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Figure 63: Input and output signals of (a) lower-rate D/A converter and(b) oversampling D/A converter.

Examples14 and15 illustrate the operation of a sigma-delta D/A converter fora discrete-time sinu-
soidal input sequence.

EXAMPLE 14 Illustration of the Oversampling D/A Conversion

Let the input to the D/A converter be a sinusoidal sequence offrequency 100 Hz operating at a sampling
rateFT of 1 kHz. Figure63(a) shows the digital input sequence and the analog output generated by a
D/A converter operating atFT from this input. Figure63(b) depicts the interpolated sinusoidal sequence
operating at a higher sampling rate of 5 kHz, obtained by passing the low-sampling-rate sinusoidal
signal through a factor-of-5 digital interpolator and the corresponding analog output generated by a
D/A converter operating at5FT rate. If we compare the two D/A converter outputs, we can see that
the staircase waveform of the oversampling D/A converter output is much smoother with smaller jumps
than that of the lower-rate D/A converter output. Thus, the oversampling D/A converter output has
considerably smaller high-frequency components in contrast to the lower-rate D/A converter. This fact
can be easily verified by examining their spectra.

The high-frequency components in the baseband outside the signal band of interest can be removed by
passing the D/A converter output through an analog lowpass filter, which also eliminates any leftover
replicas of the baseband not completely removed by the zero-order hold in the D/A converter. Since
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Figure 64: Lowpass filtered output signals of (a) conventional D/A converter and (b) oversampling D/A converter.

the signal band of interest occupies a small portion of the baseband, the replicas of the signal band im-
mediately outside the baseband are widely separated from the signal band inside the baseband. Hence,
the lowpass filter can be designed with a very wide transitionband. Moreover, due to reduced high-
frequency components in the D/A converter output caused by oversampling, the stopband attenuation
also does not have to be very large. On the other hand, the replicas of the signal band in the spectrum
of the output of the low-rate D/A converter are closely spaced, and the high-frequency components are
relatively large in amplitudes. In this case, the lowpass filter must have a sharp cutoff with much larger
stopband attenuation to effectively remove the undesired components in the D/A converter output.

Figure64 shows the filtered outputs of the conventional lower-rate and oversampled D/A converters
when the same lowpass filter with a wide transition band is used in both cases. As can be seen from this
figure, the analog output in the case of the low-rate D/A converter still contains some high-frequency
components, while that in the case of the oversampled D/A converter is very close to a perfect sinusoidal
signal. A much better output response is obtained in the caseof a conventional D/A converter if a sharp
cutoff lowpass filter is employed, as indicated in Figure65.

EXAMPLE 15 Illustration of the Operation of the Sigma-Delta D/A Converter Using MATLAB

In this example, we verify using MATLAB the operation of the sigma-delta D/A converter for a sinu-
soidal input sequence of frequency 100 Hz operating at a sampling rateFT of 5 kHz. The signal is
clearly oversampled since the sampling rate is much higher than the Nyquist rate of 200 Hz. Program
13 in Section14 first generates the input digital signal, then generates a two-valued digital signal by
quantizing the output of the sigma-delta quantizer, and finally, develops the output of the D/A converter
by lowpass filtering the quantized output. As in the case of the sigma-delta converter of Example14,
the filtering operation here has also been performed in the DFT domain due to the short length of the
input sequence.48

Figure66 shows the digital input signal, the quantized digital output of the sigma-delta quantizer, and
the filtered output of the D/A converter generated by this program. As can be seen from these plots, the
lowpass filtered output is nearly a scaled replica of the desired sinusoidal analog signal.

One of the most common applications of the oversampling sigma-delta D/A converter is in the compact
disk (CD) player. Figure67 shows the block diagram of the basic components in the signalprocessing
part of a CD player, where typically a factor-of-4 oversampling D/A converter is employed for each audio
channel.54 Here, the 44.1-kHz input digital audio signal is interpolated first by a factor of 4 to the 176.4-
kHz rate and then converted into an analog audio signal.

54D. Goedhart, R.J. Van de Plassche, and E.F. Stikvoort. Digital-to-analog conversion in playing a compact disc.Philips Technical
Review, 40(6):174–179, 1982.
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Figure 65: Filtered output signals of the conventional D/A converter employing a sharp cutoff lowpass filter.
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Figure 66: Input and output waveforms of the sigma-delta quantizer of Figure62.

Clock


Demodulator
 Filter

D/A


D/A


Digital

audio

signal


Buffer memory


Error

correction


circuit


Error


circuit

concealment


Figure 67: Signal processing part of a CD player.
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13 Sparse Antenna Array Design

Linear-phased antenna arrays are used in radar, sonar, ultrasound imaging, and seismic signal processing.
Sparse arrays with certain elements removed are economicaland, as a result, are of practical interest.
There is a mathematical similarity between the far-field radiation pattern for a linear antenna array of
equally spaced elements and the frequency response of an FIRfilter. This similarity can be exploited to
design sparse arrays with specific beam patterns. In this section, we point out this similarity and outline
a few simple designs of sparse arrays. We restrict our attention here on the design of sparse arrays for
ultrasound scanners.

Consider a linear array ofN isotropic, equispaced elements with inter-element spacing d and located
at xn D n � d for 0 � n � N � 1; as shown in Figure68. The far-field radiation pattern at an angle�

away from the broadside (i.e., the normal to the array), is given by

P.u/ D
N �1
X

nD0

wŒn�ej Œ2�.u=�/d�n; (142)

wherewŒn� is the complex excitation or weight of thenth element,� is the wavelength, andu D sin� . The
functionP.u/ thus can be considered as the discrete-time Fourier transform of wŒn�; with the frequency
variable given by2�.u=�/d . The array element weightingwŒn� as a function of the element position is
called theaperture function. For a uniformly excited array,wŒn� D a constant, and the grating lobes in the
radiation pattern are avoided ifd � �=2. Typically,d D �=2, in which case the range ofu is between��

and�. From Eq. (142), it can be seen that the expression forP.u/ is identical to the frequency response
of an FIR filter of lengthN . An often used element weight iswŒn� D 1 whose radiation pattern is this
same as the frequency response of a running-sum or boxcar FIRfilter.

Sparse arrays with fewer elements are obtained by removing some of the elements, which increases
the interelement spacing between some consecutive pairs ofelements to more than�=2. This usually
results in an increase of sidelobe levels and can possibly cause the appearance of grating lobes in the
radiation pattern. However, these unwanted lobes can be reduced significantly by selecting array element
locations appropriately. In the case of ultrasound scanners, a two-way radiation pattern is generated by
a transmit array and a receive array. The design of such arrays is simplified by treating the problem as
the design of an “effective aperture function”weff Œn�; which is given by the convolution of the transmit
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aperture functionwT Œn� and the receive aperture functionwT Œn�:55

weff Œn� D wT Œn�
� wRŒn�: (143)

If the number of elements (including missing elements) in the the transmit and receive arrays are, respec-
tively, L andM , then the number of elementsN in a single array with an effective aperture function
weff Œn� is L C M � 1. The design problem is thus to determinewT Œn� andwT Œn� for a desiredweff Œn�.

13.1 The Polynomial Factorization Approach

In thez-domain, Eq. (143) is equivalent to

Peff .z/ D PT .z/PR.z/; (144)

where

Peff .z/ D
N �1
X

nD0

weff Œn�z�n; PT .z/ D
L�1
X

nD0

wT Œn�z�n ; PR.z/ D
M�1
X

nD0

wRŒn�z�n: (145)

As a result, the sparse antenna array design problem can be formulated as the factorization of the poly-
nomialPeff .z/ into factorsPT .z/ andPR.z/ with missing coefficients. We first consider the design of
a uniform array for whichweff Œn� D 1. To this end, we can make use of the following factorization of
Peff .z/ for values ofN that are powers-of-2:56

Peff .z/ D .1 C z�1/.1 C z�2/ � � � .1 C z�2K�1

/; (146)

whereN D 2K .

13.2 Uniform Effective Aperture Function

We now illustrate the application of the above factorization approach to sparse array design for the case
N D 16; that is,K D 4. From Eq. (146) we then have

Peff .z/ D .1 C z�1/.1 C z�2/.1 C z�4/.1 C z�8/:

Three possible choices forPT .z/ andPR.z/ are as follows:

Design #1W PT .z/ D 1;

PR.z/ D .1 C z�1/.1 C z�2/.1 C z�4/.1 C z�8/

D 1 C z�1 C z�2 C z�3 C z�4 C z�5 C z�6 C z�7

C z�8 C z�9 C z�10 C z�11 C z�12 C z�13 C z�14 C z�15;

Design #2W PT .z/ D 1 C z�1;

PR.z/ D .1 C z�2/.1 C z�4/.1 C z�8/

D 1 C z�2 C z�4 C z�6 C z�8 C z�10 C z�12 C z�14;

Design #3W PT .z/ D .1 C z�1/.1 C z�8/ D 1 C z�1 C z�8 C z�9;

PR.z/ D .1 C z�2/.1 C z�4/ D 1 C z�2 C z�4 C z�6:

55G.R. Lockwood, P-C. Li, M. O’Donnell, and F.S. Foster. Optimizing the radiation pattern of sparse periodic linear arrays. IEEE
Trans. on Ultrasonics Ferroelectrics, and Frequency Control, 43:7-14, January 1996.

56S.K. Mitra, M.K. Tchobanou, and G. Jovanovic-Dolecek. A simple approach to the design of one-dimensional sparse antenna
arrays. InProc. IEEE International Symposium on Circuits & Systems, May 2004, pages III-541–III-544, Vancouver, B.C., Canada.
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Figure 69: Radiation patterns of transmit array (dotted line), receive array (dashed line), and two-way radiation
pattern (solid line). The radiation patterns have been scaled by a factor of 16 to make the value of the two-way
radiation pattern atu D 0 unity.

Additional choices forPT .z/ andPR.z/ can be found elsewhere.57

Design #1 consists of a single-element transmit array and a 16-element nonsparse receive array and
thus requires a total of 17 elements. The remaining designs given above result in sparse transmit and/or
receive arrays. For example, the transmit and receive aperture functions for Design #2 are given by56

wT Œn� D f1 1g; wRŒn� D f1 0 1 0 1 0 1 0 1 0 1 0 1 0 1g;

where0 in wRŒn� indicates the absence of an element and requires a total of 10elements. Figure69
shows the radiation patterns of the individual arrays and the two-way radiation pattern of the composite
array. Note that the grating lobes in the radiation pattern of the receive array are being suppressed by the
radiation pattern of the transmit array.

Most economic sparse array design with eight elements is obtained with the Design #3, requiring a
total of eight elements. For example, the transmit and receive aperture functions for Design #3 are given
by:56

wT Œn� D f1 1 0 0 0 0 0 0 1 1g; wRŒn� D f1 0 1 0 1 0 1g:

13.3 Linearly Tapered Effective Aperture Function

The shape of the effective aperture function can be made smoother to reduce the grating lobes by control-
ling the shape of the transmit and receive aperture functions. For the design of a sparse array pair with a
linearly tapered effective aperture functionPeff .z/, one can choose57

Peff .z/ D P1.z/P2.z/; (147)

where

P1.z/ D 1

R

R�1
X

nD0

z�n; P2.z/ D
S�1
X

nD0

z�n: (148)

57S.K. Mitra, G. Jovanovic-Dolecek, and M.K. Tchobanou. On the design of one-dimensional sparse arrays with apodized end
elements. InProc. 12th European Signal Processing Conference, pages 2239-2242, Vienna, Austria, September 2004.
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Figure 70: Illustration of effective aperture smoothing by shaping transmit and receive aperture functions. The
radiation patterns have been scaled to make the value of the two-way radiation pattern atu D 0 unity.

The number of elements in the effective aperture function isthenN D R C S � 1. The number of
apodized elements in the beginning and at the end of the effective aperture function is.R � 1/ each. The
values of the apodized elements are1

R
; 2

R
; : : : ; R�1

R
. Moreover, the parameterS must satisfy the condition

S > R � 1. For a sparse antenna pair design, the value of eitherR or S or both must be power-of-2.
We consider the design of a linearly tapered array forR D 3 andS D 8; which results in an effective

aperture function given by

weff Œn� D f 1
3

2
3

1 1 1 1 1 1 2
3

1
3
g:

A possible design for the transmit and receive arrays is given by

wT Œn� D f1 1 0 0 1 1g;
wRŒn� D f 1

3
1
3

2
3

1
3

1
3
g:

The corresponding scaled radiation patterns are shown in Figure70(a).

13.4 Staircase Effective Aperture Function

Sparse antenna array pairs with a staircase effective aperture function also exhibit reduced grating lobes.
For designing such arrays, there are two possible forms of the factorP1.z/ in Eq. (147) [Mit2004b]. One
form is for an even number of steps in the effective aperture function, and the other form is for an odd
number of steps. We consider here the first form for which

P1.z/ D 1
2`C1

Œ1 C z�k1 .1 C z�k2 .1 C : : : C z�k` .1 C : : : C z�k2 .1 C z�k1 / : : :///�: (149)

The numberR of elements (including zero-valued ones) inP1.z/ is given byR D 2
P`

iD1 ki C 1.
Moreover, for a staircase effective aperture function, thenumberS of elements inP2.z/ of Eq. (147)
must satisfy the conditionS > 2

P`
iD1 ki . The number of apodized elements in the beginning and at

the end of the effective aperture function is2
P`

iD1 ki each. The values of the apodized elements are
1

2`C1
; 2

2`C1
; : : : ; 2`

2`C1
. For a sparse antenna pair design, the value ofS must be a power-of-2.

For example, consider the design of an array withk1 D 1; k2 D 2, andS D 8. Here

P1.z/ D 1
5
Œ1 C z�1.1 C z�2.1 C z�2.1 C z�1///� D 1

5
Œ1 C z�1 C z�3 C z�5 C z�6�;

P2.z/ D 1 C z�1 C z�2 C z�3 C z�4 C z�5 C z�6 C z�7:
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The effective aperture function is then of the form

weff Œn� D f0:2 0:4 0:4 0:6 0:6 0:8 1 1 0:8 0:6 0:6 0:4 0:4 0:2g:

One possible choice for the transmit and the receive aperture functions is given by

wT Œn� D f 1
5

1
5

1
5

2
5

0 2
5

1
5

1
5

1
5
g;

wRŒn� D f1 1 0 0 1 1g:

The corresponding scaled radiation patterns are shown in Figure 70(b).

14 Programs

Program 1—Dual-Tone Multifrequency Tone Detection Using t he DFT

clf;
d = input(’Type in the telephone digit = ’, ’s’);
symbol = abs(d);
tm = [49 50 51 65;52 53 54 66;55 56 57 67;42 48 35 68];
for p = 1:4;
for q = 1:4;

if tm(p,q) == abs(d);break,end
end

if tm(p,q) == abs(d);break,end
end
f1 = [697 770 852 941];
f2 = [1209 1336 1477 1633];
n = 0:204;
x = sin(2 * pi * n* f1(p)/8000) + sin(2 * pi * n* f2(q)/8000);
k = [18 20 22 24 31 34 38 42];
val = zeros(1,8);
for m = 1:8;

Fx(m) = goertzel(x,k(m)+1);
end
val = abs(Fx);
stem(k,val);grid; xlabel(’k’);ylabel(’|X[k]|’);
limit = 80;
for s = 5:8;

if val(s) > limit,break,end
end
for r = 1:4;

if val(r) > limit,break,end
end
disp([’Touch-Tone Symbol = ’,setstr(tm(r,s-4))])
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Program 2—Spectral Analysis of a Sum of Two Sinusoids Using t he DFT

clf;
N = input(’Signal length = ’);
R = input(’DFT length = ’);
fr = input(’Type in the sinusoid frequencies = ’);
n = 0:N-1;
x = 0.5 * sin(2 * pi * n* fr(1)) + sin(2 * pi * n* fr(2));
Fx = fft(x,R);
k = 0:R-1;
stem(k,abs(Fx));grid
xlabel(’k’); ylabel(’Magnitude’);
title([’N = ’,num2str(N),’, R = ’,num2str(R)]);

Program 3—Spectrogram of a Speech Signal

load mtlb
n = 1:4001;
plot(n-1,mtlb);
xlabel(’Time index n’);ylabel(’Amplitude’);
pause
nfft = input(’Type in the window length = ’);
ovlap = input(’Type in the desired overlap = ’);
specgram(mtlb,nfft,7418,hamming(nfft),ovlap)

Program 4—Power Spectrum Estimation Using Welch’s Method

n = 0:1000;
g = 2* sin(0.12 * pi * n) + sin(0.28 * pi * n) + randn(size(n));
nfft = input(’Type in the fft size = ’);
window = hamming(256);
noverlap =input(’Type in the amount of overlap = ’);
[Pxx, f] = psd(g,nfft,2,window,noverlap);
plot(f/2,10 * log10(Pxx));grid
xlabel(’\omega/\pi’);ylabel(’Power Spectrum, dB’);
title([’Overlap = ’,num2str(noverlap),’ samples’]);

Program 5—Development of an AR Model of an FIR Filter

b = remez(13, [0 0.5 0.6 1], [1 1 0 0]);
[h,w] = freqz(b,1,512);
[d,E] = lpc(b,7);
[h1,w] = freqz(sqrt(E * length(b)),d,512);
plot(w/pi,abs(h),’-’,w/pi,abs(h1),’--’);
xlabel(’\omega/\pi’);ylabel(’Magnitude’);
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Program 6—Single Echo

%Delay Function
% y = singleecho(x, R, a);
%
% Parameters:
% x is the input audio signal
% R is the delay in number of samples
% a specifies the attenuation in the echo
%
% Return value:
% y is the output signal
%
% Copyright 2004 Vincent Wan
% Credits: Vikas Sahdev, Rajesh Samudrala, Rajani Sadasiva m
%
% Example:
% [x,fs,nbits] = wavread(’dsp01.wav’);
% y = singleecho(x,8000,0.5);
% wavplay(y,fs);

function y = singleecho(x, R, a);
xlen=length(x); %Calc. the number of samples in the file

y=zeros(size(x));

% filter the signal

for i=1:1:R+1
y(i) = x(i);

end

for i=R+1:1:xlen
y(i)= x(i)+ a * x(i-R);

end;

Program 7—Multiple Echo

% y = multiecho(x,R,a,N);
%
% Generates multiple echos R samples apart with exponential ly decaying amplitude
% Parameters:
% x is the input audio signal
% R is the delay in number of samples
% a specifies the attenuation in the echos
% N-1 is the total number of echos (If N = 0, an infinite number o f echos is produced)
%
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% Return value:
% y is the output signal
%
% Copyright 2004 Vincent Wan
% Credits: Vikas Sahdev, Rajesh Samudrala, Rajani Sadasiva m
%
% Example:
% [x,fs,nbits] = wavread(’dsp01.wav’);
% y = multiecho(x,8000,0.5,3);
% wavplay(y,fs);

function y = multiecho(x,R,a,N);

if (N == 0)
num=[zeros(1,R),1];
den=[1,zeros(1,R-1),-a];

else
num=[1,zeros(1,N * R-1),-a^N];
den=[1,zeros(1,R-1),-a];

end
y=filter(num,den,x);

Program 8—Allpass Reverberator

%Allpass reverberator
% y = alpas(x,R,a)
%
% Parameters:
% x is the input audio signal
% R is the delay in allpass structure
% a specifies the allpass filter coefficient
%
% Return value:
% y is the output signal
%
% Copyright 2004 Vincent Wan
% Credits: Vikas Sahdev, Rajesh Samudrala, Rajani Sadasiva m
%
% Example:
% [x,fs,nbits] = wavread(’dsp01.wav’);
% y = alpas(x,8000,0.5);
% wavplay(y,fs);

function y = alpas(x,R,a)

num=[a,zeros(1,R-1),1];
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den=fliplr(num);

y=filter(num,den,x);

Program 9—Natural Sounding Reverberator

%A proposed natural sounding reverberator (The SchroederÕ s Reverberator)
% y = reverb(x,R,a)
%
% Parameters:
% x is the input audio signal
% R is a 6-element vector describing the delays in allpass str ucture
% a is a 7-element vector describing multiplier values in the reverberator
%
% Return value:
% y is the output signal
%
% Copyright 2004 Vincent Wan
% Credits: Vikas Sahdev, Rajesh Samudrala, Rajani Sadasiva m
%
% Example:
% a = [0.6 0.4 0.2 0.1 0.7 0.6 0.8];
% R = [700 900 600 400 450 390];
% [x,fs,nbits] = wavread(’dsp01.wav’);
% y = reverb(x,R,a);
% wavplay(y,fs);

function y = reverb(x,R,a)

d1 = multiecho(x, R(1), a(1), 0);
d2 = multiecho(x, R(2), a(2), 0);
d3 = multiecho(x, R(3), a(3), 0);
d4 = multiecho(x, R(4), a(4), 0);
d_IIR = d1 + d2 + d3 + d4; %output of IIR echo generators

d_ALL1 = alpas(d_IIR, R(5), a(5));
d_ALL2 = alpas(d_ALL1, R(6), a(6));

y = x + a(7) * d_ALL2;

14.1 Program 10—Flanger

% flang(x,R,a,omega,fs)
%
% Parameters:
% x is the input audio signal; R is the maximum delay value
% a specifies the attenuation in the echo, and can be set betwe en [-1,1]
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% omega is a low angular frequency over which the delay varies sinusoidally
% fs is the sampling frequency
%
% Return value: y is the output signal
%
% Copyright 2004 Vincent Wan
% Credits: Vikas Sahdev, Rajesh Samudrala, Rajani Sadasiva m
%
% Example:
% [x,fs,nbits] = wavread(’dsp01.wav’);
% y = flang(x,1000,0.5,2 * pi * 6,fs);
% wavplay(y,fs);

function y = flang(x,R,a,omega,fs)
y=zeros(size(x));

% filter the signal
max_length = length(x);
for i=1:max_length

delay = R/2 * (1-cos(omega * i/fs));
delay_ceiling = ceil(delay);
y(i) = x(i);
if (delay <= (i - 1))

%Use linear interpolation
y(i) = y(i)+a * ( x(i-delay_ceiling) + (x(i-delay_ceiling+1) - x(i-delay _ceiling))

end
end

Program 11—Sigma–Delta Quantizer Operation

N = input(’Type in the length of input sequence = ’);
n = 1:1:N;
m = n-1;
A = input(’Type in the input amplitude = ’);
x = A* ones(1,N);
plot(m,x);
axis([0 N-1 -1.2 1.2]);
xlabel(’Time’); ylabel(’Amplitude’);
title(’Input analog signal’);
pause
y = zeros(1,N+1);
v0 = 0;

for k = 2:1:N+1;
v1 = x(k-1) - y(k-1) + v0;
y(k) = sign(v1);
v0 = v1;

end
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yn = y(2:N+1);
axis([0 N-1 -1.2 1.2]);
stem(m, yn);
xlabel(’Time’); ylabel(’Amplitude’);
title(’Output of sigma-delta modulator’);
ave = sum(yn)/N;
disp(’Average value of output is = ’);disp(ave);

Program 12—Sigma–Delta A/D Converter Operation

wo = 2* pi * 0.01;
N = input(’Type in the length of input sequence = ’);
n = 1:1:N;
m = n-1;
A = input(’Type in the amplitude of the input = ’);
x = A* cos(wo * m);
axis([0 N-1 -1.2 1.2]);
plot(m,x);
xlabel(’Time’); ylabel(’Amplitude’);
title(’Input analog signal’);
pause
y = zeros(1,N+1);
v0 = 0;
for k = 2:1:N+1;
v1 = x(k-1) - y(k-1) + v0;

if v1 >= 0;
y(k) = 1;

else
y(k) = -1;

end
v0 = v1;
end
yn = y(2:N+1);
axis([0 N-1 -1.2 1.2]);
stairs(m, yn);
xlabel(’Time’); ylabel(’Amplitude’);
title(’Output of sigma-delta quantizer’);
Y = fft(yn);
pause
H = [1 1 0.5 zeros(1,N-5) 0.5 1];
YF = Y. * H;
out = ifft(YF);
axis([0 N-1 -1.2 1.2]);
plot(m,out);
xlabel(’Time’); ylabel(’Amplitude’);
title(’Lowpass filtered output’);
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