
Additional Examples of Chapter 13: 
Multirate Digital Signal Processing Fundamentals 

 - 1 - 

Example E13.1: Develop an expression for the output y[n] as a function of the input x[n] for the 
multirate structure of Figure E13.1. 

25x[n] y[n]10
 

Figure E13.1 
Answer:  

 
x[n] y[n]5 10 2

  ≡  

x[n] y[n]5 25 2
  ≡   

x[n] y[n]2 2
x1[n]

 

Hence, x1[n] = x[2n] and y[n] =
x1[n / 2], for n = 2r,

0, otherwise
 
 
 

=
x[n], for n = 2r,

0, otherwise
 
 
 

  Therefore, 

y[n] =
x[n], for n = 2r,

0, otherwise.
 
 
 

 

______________________________________________________________________________ 

Example E13.2:    Consider the multirate structure of Figure E13.2(a) where H0 (z) , H1(z), and 
H2 (z)  are, respectively, ideal zero-phase real-coefficient lowpass, bandpass, and highpass filters 
with frequency responses as indicated in Figure E13.2(b).  If the input is a real sequence with a 
discrete-time Fourier transform as shown in Figure E13.2(c), sketch the discrete-time Fourier 
transforms of the outputs y0[n], y1[n], and y2[n]. 
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(b) 
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Figure E13.2 

Answer: 
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Example E13.3:  Develop an alternate two-stage design of the decimator of Example 13.10 by 
designing the decimation filter in the form H(z) = G(z6)F(z) . Compare its computational 
requirements with that of  the design in Example 13.10. 
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Answer:  Specifications for H(z) are as follows:  Fp = 180 Hz, Fs = 200 Hz,  δp = 0.002, δs = 
0.001.   

H(z) 30

12 kHz 12 kHz 400 Hz 
 
We realize H(z) as H(z) = G(z6)F(z) .   

12 kHz 12 kHz 400 Hz2 kHz12 kHz

56F(z) G(z6)

 
 
Therefore, specifications for G(z) are as follows:   

 Fp = 1080 Hz, Fs = 1200 Hz,  δp = 0.001, δs = 0.001.  Here, ∆f =
120

12000
.  Hence, from Eq. 

(10.3), order of G(z) is given by NG =
–20 log10 0.001× 0.001 – 13

14.6(120 / 12000)
=

47 ×12000
14.6 ×120

= 321.92. 

 
Likewise, specifications for F(z) are :  Fp = 180 Hz, Fs = 1800 Hz,  δp = 0.001, δs = 0.001.  Here, 

∆f =
1620
12000

.   Hence, order of F(z) is given by  

NF =
–20log10 10–6 – 13
14.6(1620 / 12000)

=
47 ×12000
14.6 ×1620

= 23.846.  Thus, we choose NG = 322  and NF = 24 . 

 RM,G = (322 + 1) ×
2000

5
= 129, 200 muliplications/second (mps), and  

 RM,F = (24 +1) ×
12000

6
= 50,000  mps 

Hence, total no. of mps = 179,200.  Hence the computational complexity of this particular IFIR 
implementation is slightly higher here than that in Example 13.10. 
 

12 kHz 12 kHz 400 Hz

6 5G(z)

2 kHz 2 kHz

F(z)

 
______________________________________________________________________________ 

Example E13.4:  Determine the computational complexity of a single-stage decimator designed 
to reduce the sampling rate from 60 kHz to 3 kHz. The decimation filter is to be designed as an 
equiripple FIR filter with a passband edge at 1.25 kHz, a passband ripple of 0.02, and a stopband 
ripple of 0.01. Use the total multiplications per second as a measure of the computational 
complexity. 

Answer:  
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H(z) 20

60 kHz 60 kHz 3 kHz 

Specifications for H(z) are:  Fp = 1250  kHz, Fs =1500  kHz, δp = 0.02  and δp = 0.02δs = 0.01.   
Hence, from Eq. (10.3), order N of H(z) is given by 

N =
–20 log10 0.02 × 0.01 –13

14.6(250 / 60000)
=

23.989 × 60000
14.6 × 250

= 394.34 .  We thus choose N = 395.  

 Computational complexity is therefore = 396 ×
60,000

20
= 1,188,000. 

______________________________________________________________________________ 

Example E13.5:  (a) Determine the computational complexity of a single-stage interpolator to be 
designed to increase the sampling rate from 600 Hz to 9 kHz.  The interpolator is to be designed 
as an equiripple FIR filter with a passband edge at 200 Hz, a passband ripple of 0.002, and a 
stopband ripple of 0.004.  Use Kaiser's formula given in Eq. (10.3) to estimate the order of the 
FIR filter.  The measure of computational complexity is given by the total number of 
multiplications per second. 

(b)  Develop a two-stage design of the above interpolator and compare its computational 
complexity with that of the single-stage design. 

Answer:  (a)  Specifications for H(z) are: Fp = 200  Hz, Fs = 300  Hz, δp = 0.002  and δs = 0.004.    

15 H(z)

600 Hz 9 kHz 9 kHz 
Here, ∆f =

100
9000

.   Hence, from Eq. (10.3), order N of H(z) is given by 

N =
–20 log10 0.002 × 0.004 – 13

14.6(100 / 9000)
=

37.969 × 9000
14.6 ×100

= 234.06 .  We choose N = 235.  Hence, 

 Computational complexity of H(z)  = (235 +1) ×
9000
15

= 141,600 mps. 

(b)  We realize  H(z) = G(z5)F(z). 

600 Hz 9 kHz9 kHz

3 5G(z) F(z)

1.8 kHz 1.8 kHz  

Specifications for G(z) are: Fp =  5× 200 Hz = 1000 Hz, Fs =   5× 300 Hz = 1500 Hz, δp = 0.002  

and δs = 0.004.  Here, ∆f =
500
9000

.  Hence, from Eq. (10.3), order NG  of G(z) is given by 



Additional Examples of Chapter 13: 
Multirate Digital Signal Processing Fundamentals 

 - 5 - 

NG =
−20 log10 0.001 × 0.004) − 13

14.6∆f
= 50.5225.  We choose NG  = 51.  

  RM,G  = (52 +1) ×
1800

3
= 31,800  mps. 

Specifications for F(z) are: Fp =  200 Hz = 1000 Hz, Fs =  1500 Hz, δp = 0.002  and δs = 0.004.  

Here, ∆f =
1300
9000

.  Hence, from Eq. (10.3), order NF  of F(z) is given by 

NF =
−20log10 0.001× 0.004) −13

14.6(1300 / 9000)
=19.4317 .  We choose NF  = 20.  

  RM,F  = (20 +1) ×
9000

5
= 37,800  mps. 

Total computational complexity of the IFIR-based realization is therefore RM,G +  RM,F = 
69,600 mps. 
______________________________________________________________________________ 

Example E13.6:  Develop a computationally efficient realization of a factor-of-4 interpolator 
employing a length-16 linear-phase FIR filter. 

Answer:  A computationally efficient realization of the factor-of-4 interpolator 

H(z) ↑4
  

is obtained by applying a 4-branch polyphase decomposition to H(z): 
    H(z) = E0 (z4) + z–1E1(z4 )+ z–2E2(z4) + z–3E3(z4 ).  
and then moving the down-sampler through the polyphase filters resulting in 

E 0(z)
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E 3(z)
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z–1

z–1

4

4

4

4

 

Further reduction in computational complexity is achieved by sharing common multipliers if 
 H(z) is a linear-phase FIR filter.   For example, for a length-16 Type II FIR transfer 
function a computationally efficient factor-of-4 interpolator structure based on the above 
equation is as shown below: 
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