
Additional Examples of Chapter 11:
DSP Algorithm Implementation

 - 1 -

Example E11.1: Analyze the digital filter structure of Figure E11.1 and develop a set of time-
domain equations in terms of the input x[n], output y[n], and the intermediate variables wk[n] in
a sequential order. Does this set describe a valid computational algorithm? Justify your answer
by developing a matrix representation of the digital filter structure and by examining the matrix
F.

x[n] y[n]

w [n]
1

w [n]2

0α

1α

1β

2β

z 1
_

z 1
_

z 1
_

w [n]3

w [n]4

w [n]5

3β

2α

3α

1_

1_

Figure E11.1

Answer: Analysis of Figure E11.1 yields
w1[n] = α1β1w1[n − 1] + x[n] − w3[n],
w2[n] = β3w4[n −1],
w3[n] = β2w5[n − 1],
w4[n] = α3w2[n] + w3[n],
w5[n] = α2w3[n]− w2[n] + β1w1[n −1],
y[n] = α0x[n] +β1 w1[n −1].

In matrix form the above set of equations is given by:

w1[n]
w2[n]
w3[n]
w4[n]
w5[n]
y[n]



























=

0 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 α3 1 0 0 0
0 −1 α2 0 0 0
0 0 0 0 0 0



























w1[n]
w2[n]
w3[n]
w4[n]
w5[n]
y[n]



























+

α1β1 0 0 0 0 0
0 0 0 β3 0 0
0 0 0 0 β2 0
0 0 0 0 0 0
β1 0 0 0 0 0
β1 0 0 0 0 0



























w1[n −1]
w2[n −1]
w3[n −1]
w4[n −1]
w5[n −1]
y[n −1]



























+

x[n]
0
0
0
0

α 0x[n]



























Here the F matrix is given by

Additional Examples of Chapter 11:
DSP Algorithm Implementation

 - 2 -

F =

0 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 α3 1 0 0 0
0 −1 α 2 0 0 0
0 0 0 0 0 0



























Since the F matrix contains nonzero entries above the main diagonal, the above set of equations
are not computable.
__
Example E11.2: Develop a computable set of time-domain equations describing the digital
filter structure of Figure E11.1. Verify the computability condition by forming an equivalent
matrix representation and by examining the matrix F.

Answer: A computable set of equations of the structure of Figure E11.1 is given by

w2[n] = β3 w4[n −1],
w3[n] = β2 w5[n − 1],
w1[n] = α1β1w1[n − 1] − w3[n]+ x[n],
w4[n] = α3w2[n] + w3[n],
w5[n] = α2w3[n]− w2[n] + β1w1[n −1],
y[n] = α0x[n] +β1 w1[n −1].

In matrix form the above set of equations is given by:

w2[n]
w3[n]
w1[n]
w4[n]
w5[n]
y[n]



























=

0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0

α3 1 0 0 0 0
−1 α2 0 0 0 0
0 0 0 0 0 0



























w2[n]
w3[n]
w1[n]
w4[n]
w5[n]
y[n]



























+

0 0 0 β3 0 0
0 0 0 0 β2 0
0 0 α1β1 0 0 0
0 0 0 0 0 0
0 0 β1 0 0 0
0 0 β1 0 0 0



























w1[n −1]
w2[n −1]
w3[n −1]
w4[n −1]
w5[n −1]
y[n −1]



























+

0
0

x[n]
0
0

α 0x[n]



























Here the F matrix is given by

F =

0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0

α3 1 0 0 0 0
−1 α2 0 0 0 0
0 0 0 0 0 0



























Additional Examples of Chapter 11:
DSP Algorithm Implementation

 - 3 -

Since the F matrix does not contain nonzero entries above the main diagonal, the new set of
equations are computable.
__

Example E11.3: Analyze the digital filter structure of Figure E11.2 and develop a set of time-
domain equations in terms of the input x[n], output y[n], and the intermediate variables wk[n] in
a sequential order. Does this set describe a valid computational algorithm? Justify your answer
by developing a matrix representation of the digital filter structure and by examining the matrix
F.

x[n] y[n]

w [n]
1

w [n]2

0α

1α

1β

2β

z 1
_

z 1
_

z 1
_

w [n]3

w [n]4

w [n]5

3β

2α

3α

1_

1_

w [n]6

Figure E11.2

Answer: Analysis of Figure E11.2 yields

w1[n] = x[n]− α 2 w3[n] + w2[n],
w2[n] = α1β1w1[n −1],
w3[n] = α1 w1[n] − α3 w5[n] + w4[n],
w4[n] = α2 β2w3[n − 1],
w5[n] = α2 w3[n] + w6[n],
w6[n] = α3 β3w5[n −1],
y[n] = α0x[n] +α1w1[n].

In matrix form

Additional Examples of Chapter 11:
DSP Algorithm Implementation

 - 4 -

w1[n]
w2[n]
w3[n]
w4[n]
w5[n]
w6[n]
y[n]





























=

0 1 −α2 0 0 0 0
0 0 0 0 0 0 0
α1 0 0 1 −α3 0 0
0 0 0 0 0 0 0
0 0 α2 0 0 1 0
0 0 0 0 0 0 0
α1 0 0 0 0 0 0





























w1[n]
w2[n]
w3[n]
w4[n]
w5[n]
w6[n]
y[n]





























 +

0 0 0 0 0 0 0
α1β1 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 α2β2 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 α3β3 0 0
0 0 0 0 0 0 0





























w1[n −1]
w2[n −1]
w3[n −1]
w4[n −1]
w5[n − 1]
w6[n −1]
y[n −1]





























+

x[n]
0
0
0
0
0

α0x[n]





























Here the F matrix is given by F =

0 1 −α2 0 0 0 0
0 0 0 0 0 0 0

α1 0 0 1 −α3 0 0
0 0 0 0 0 0 0
0 0 α2 0 0 0 1
0 0 0 0 0 0 0

α1 0 0 0 0 0 0





























Since the F matrix contains nonzero entries above the main diagonal, the above set of equations
are not computable.
__

Example E11.4: Develop the precedence graph of the digital filter structure of Figure E11.1,
and investigate its realizability. If the structure is found to be realizable, then from the
precedence graph, determine a valid computational algorithm describing the structure.

Answer: The signal-flow graph representation of the structure of Figure E11.1 is shown below:

Additional Examples of Chapter 11:
DSP Algorithm Implementation

 - 5 -

x[n] y[n]

w1[n]

v1[n]
w2[n]

w3[n]

w4[n]w5[n]

1

1

1 1

α1 α2 α3

α0

β2z−1β1z−1
β3z−1

−1

−1

The reduced signal-flow graph obtained by removing the branches going out of the input node
and the delay branches is as indicated below:

y[n]
w1[n] v1[n]

w2[n]
w3[n]

w4[n]w5[n]

1

1 1

α1 α2 α3

−1

−1

From the above signal-flow graph we arrive at its precedence graph shown below:

−1

y[n]

w1[n]v1[n]

w2[n]

w3[n] w4[n]

w5[n]

α1

1

1

α2

1

α3

−1

1
N

2N

Additional Examples of Chapter 11:
DSP Algorithm Implementation

 - 6 -

In the above precedence graph, the set N1 contains nodes with only outgoing branches and the
final set N2 contains nodes with only incoming branches. As a result, the structure of Figure
E11.1 has no delay-free loops. A valid computational algorithm by computing the node
variables in set N1 first in any order followed by computing the node variables in set N2 in any
order. For example, one valid computational algorithm is given by

v1[n] = β1 w1[n − 1],
w3[n] = β2 w5[n − 1],
w2[n] = β3 w4[n −1],
w1[n] = α1 v1[n] − w3[n] + x[n],
w4[n] = α3 w2[n] + w3[n],
w5[n] = α2 w3[n]− w2[n] + β1 v1[n],
y[n] = α0 x[n] +v1[n].
__

Example E11.5: Develop the precedence graph of the digital filter structure of Figure E11.2,
and investigate its realizability. If the structure is found to be realizable, then from the
precedence graph, determine a valid computational algorithm describing the structure.

Answer: The reduced signal-flow graph obtained by removing the branches going out of the
input node and the delay branches from the signal-flow graph representation of the structure of
Figure E11.2 is as indicated below:

α2

y[n]w1[n]
w2[n]

w3[n]
w4[n]

w5[n]

α1

w6[n]

α1

–α3
1

–α2

The only node with outgoing branch is w6[n] and hence it is the only member of the set N1.
Since it is not possible to find a set of nodes N2 with incoming branches from N1 and all other
branches being outgoing, the structure of Figure E11.2 has delay-free loops and is therefore not
realizable.
__

Example E11.5: Determine the transfer function H(z) of a third-order causal IIR digital filter
whose first 10 impulse response samples are given by

{h[n]}= 2, −5, 6, −2, −9, 18, −7, −31, 65, −30{ }.

Additional Examples of Chapter 11:
DSP Algorithm Implementation

 - 7 -

Answer: H(z) =
p0 + p1z

−1 + p2z−2 + p3z−3

1+ d1 z−1 + d2 z−2 + d3 z−3 . The equation corresponding to Eq. (11.16) is

given by

p0
p1
p2
p3
0
0
0





























=

2 0 0 0
−5 2 0 0
6 −5 2 0
−2 6 −5 2
−9 −2 6 −5
18 −9 −2 6
−7 18 −9 −2





























1
d1
d2
d3





















. Therefore, from Eq. (11.20) we have

d1
d2
d3

















= −
−2 6 −5
−9 −2 6
18 −9 −2

















−1 −9
18
−7

















=
2
3
1
















 and from Eq. (11.15) we have

p0
p1
p2
p3





















=

2 0 0 0
−5 2 0 0
6 −5 2 0
−2 6 −5 2



















1
2
3
1



















=

2
−1
2
−3


















. Hence, H(z) =

2 − z−1 + 2 z−2 − 3z−3

1 + 2z−1 + 3z−2 + z−3 .

__

Example E11.6: A sequence y[n] is to be formed by a linear convolution of a length-8 sequence
x[n] with a length-6 sequence h[n]. To determine y[n], we can follow one of the following
methods:
Method #1: Direct implementation of the linear convolution.
Method #2: Implementation of the linear convolution via a single circular convolution.
Method #3: Implementation of the linear convolution using a radix-2 FFT algorithm.
Determine the least number of real multiplications needed in each of the above methods. For the
radix-2 FFT algorithm, do not include in the count multiplication by ±1, ± j, and WN

0 .

Answer: Method #1: Total # of real multiplications required

= 2 n
n=1

N
∑









 + N(L − N −1) = 2 n

n=1

6
∑









 + 6(8 − 6 −1) = 48.

Method #2: Total # of real multiplications required = 132 = 169.

Method #3: Linear convolution via radix-2 FFT - The process involves computing the 16-point
FFT G[k] of the length-16 complex sequence g[n] = xe[n] + jhe[n] where xe[n] and he[n] are
length-16 sequences obtained by zero-padding x[n] and h[n], respectively. Then recovering the
16-point DFTs, Xe[k] and He [k], of xe[n] and he[n], respectively, from G[k]. Finally, the
IDFT of the product Y[k] = Xe[k] ⋅He[k] yields y[n].

Additional Examples of Chapter 11:
DSP Algorithm Implementation

 - 8 -

Now, the first stage of the 16-point radix-2 FFT requires 0 complex multiplications, the second
stage requires 0 complex multiplications, the third stage requires 4 complex multiplications, and
the multiplications.

of complex mult. to implement G[k] = 10

of complex mult. to recover Xe[k] and He [k] from G[k] = 0

of complex mult. to form Y[k] = Xe[k] ⋅He[k] = 16

of complex mult. to form the IDFT of Y[k] = 10

Hence, the total number of complex mult. = 36

A direct implementation of a complex multiplication requires 4 real multiplications resulting in a
total of 4× 36 = 144 real multiplications for Method #3. However, if a complex multiply can be
implemented using 3 real multiplies (see Problem 11.13), in which case Method #3 requires a
total of 3× 36 = 108 real multiplications.
__
Example E11.7: An input sequence x[n] of length 1024 is to be filtered using a linear-phase
FIR filter $h[n]$ of length 34. This filtering process involves the linear convolution of two
finite-length sequences and can be computed using the overlap-add algorithm discussed in
Section 5.10.2 where the short linear convolutions are performed using the DFT-based approach
of Figure 5.13 with the DFTs implemented by the Cooley-Tukey FFT algorithm.

(a) Determine the appropriate power-of-2 transform length that would result in a minimum
number of multiplications and calculate the total number of multiplications that would be
required.

(b) What would be the total number of multiplications if the direct convolution method is used?

Answer: (a) Since the impulse response of the filter is of length 34, the transform length N
should be greater than 34. If L denotes the number of input samples used for convolution, then L
= N – 33. So for every L samples of the input sequence, an N-point DFT is computed and
multiplied with an N-point DFT of the impulse response sequence h[n] (which needs to be
computed only once), and finally an N-point inverse of the product sequence is evaluated.
Hence, the total number RM of complex multiplications required (assuming N is a power-of-2) is
given by
RM =

1024
N−33 Nlog2 N + N()+ N

2
log2 N .

It should be noted that in developing the above expression, multiplications due to twiddle
 factors of values ±1 and ± j have not been excluded. The values of RM for different
values of N are as follows:
 For N = 64, RM = 15,424
 For N = 128, RM = 11,712
 for N = 256, RM = 12,544

Additional Examples of Chapter 11:
DSP Algorithm Implementation

 - 9 -

 for N = 512, RM = 17,664
Hence, N = 128 is the appropriate choice for the transform length requiring 14,848 complex
multiplications or equivalently, 11,712× 3 = 35,136 real multiplications.

Since the first stage of the FFT calculation process requires only multiplications by ±1, the total
number of complex multiplications for N = 128 is actually

RM =
1024
N−33 Nlog2 N + N()+ N

2
log2 N − N

2
 = 11,648

or equivalently, 11,648× 3 = 34,944 real multiplications.

(b) For direct convolution, # of real multiplications =

2 n
n=1

N
∑









 + N(L − N −1) = 2 n

n=1

34
∑









 + 34(1024 − 34 −1) = 34,816.

__

Example E11.8: Develop the index mapping for implementing an N-point DFT X[k] of a
length-N sequence x[n] using the Cooley-Tukey FFT algorithm for N = 12.

Answer: N = 12. Choose N1 = 4 and N2 = 3. Thus,

 n = n1 + 4 n2,
0 ≤ n1 ≤ 3
0 ≤ n2 ≤ 2





, and k = 3k1 + k2,
0 ≤ k1 ≤ 3
0 ≤ k2 ≤ 2





.

x[0] x[1] x[2] x[3]
x[4] x[5] x[6] x[7]
x[8] x[9] x[10] x[11]

n1n 2 0
0

1

1
2

2 3

X[0] X[3] X[6] X[9]
X[1] X[4] X[7] X[10]
X[2] X[5] X[8] X[11]

k1k2 0
0

1

1
2

2 3

__

Example E11.9: Develop the index mapping for implementing an N-point DFT X[k] of a
length-N sequence x[n] using the prime factor algorithm for N = 12.

Answer: N = 12. Choose N1 = 4 and N2 = 3.
 A = 3, B = 4, C =3 < 3−1 >4= 9, D = 4 < 4−1 >3= 4.

 n = < 3n1 + 4n2 >12,
0 ≤ n1 ≤ 3
0 ≤ n2 ≤ 2





, k = < 9k1 + 4k2 >12
0 ≤ k1 ≤ 3
0 ≤ k2 ≤ 2





.

n1n 2 0
0

1

1
2

2 3
k1k2 0

0
1

1
2

2 3
x[0] x[3] x[6] x[9]
x[4] x[7] x[10] x[1]
x[8] x[11] x[2] x[5]

X[0] X[9] X[6] X[3]
X[4] X[1] X[10] X[7]
X[8] X[5] X[2] X[11]

Additional Examples of Chapter 11:
DSP Algorithm Implementation

 - 10 -

__

Example E11.10: Develop a scheme to compute the 3072-point DFT of a sequence of length
3072 using 512-point FFT modules and complex multiplications and additions. Show the
scheme in block diagram form. How many FFT modules and complex multiplications and
additions are needed for the overall computation?

Answer: Note that 3072 = 512 × 6. Now an N-point DFT , with N divisible by 6, can be
computed as follows:

X[k] = x[n]WN
nk

n=0

N−1
∑ = X0[〈k〉N /6] + WN

k ⋅X1[〈k〉N/6]+ WN
2k ⋅X 2[〉k〉N/6]

 + WN
3k ⋅ X3[〈k〉N/6] + WN

4k ⋅ X4[〈k〉N/6] + WN
5k ⋅ X5[〈k〉N/6], where

X l[〈k〉N/6] = x[6 r + l]WN/6
r k

r= 0

N
6

−1

∑ , 0 ≤ l ≤ 5. For N = 3072, we thus get

X[k] = X0[〈k〉512] + W3072
k ⋅ X1[〈k〉512] + W3072

2k ⋅ X2[〈k〉512]

 + W3072
3k ⋅ X3[〈k〉512] + W3072

4k ⋅X4[〈k〉512] + W3072
5k ⋅ X5[〈k〉512], where

X l[〈k〉512] = x[6 r + l]W512
r k

r=0

511
∑ , 0 ≤ l ≤ 5.

z

z

z

z

z

x[n] X[k]

512-point
FFT

512-point
FFT

512-point
FFT

512-point
FFT

512-point
FFT

512-point
FFT6

6

6

6

6

6

W1536
k

W1536
k

W1536
k

W1536
k

W3072
k

x000[n]

x001[n]

x010[n]

x011[n]

x100[n]

x101[n]

X000[< k >512]

X001[< k >512]

X010[< k >512]

X011[< k >512]

X100[< k >512]

X101[< k >512]

Additional Examples of Chapter 11:
DSP Algorithm Implementation

 - 11 -

Now an N-point FFT algorithm requires
N
2

log2 N complex multiplications and N log2 N

complex additions. Hence, an N
6 − point FFT algorithm requires N

12
log2

N
6





 complex

multiplications and N
6

log2
N
6





 complex additions. In addition, we need 5 × N complex

multiplications and 5 × N complex additions to compute the N-point DFT X[k]. Hence, for N =

3072, the evaluation of X[k] using 6 (512)-point FFT modules requires N
12

log2
N
6





 + 5 × N =

256 × log2 (512) + 5 × 3072 = 17,664 complex multiplications and N
6

log2
N
6





 + 5 × N

512 × log2 (512) + 5 × 3072 = 19,968 complex additions.

It should be noted that a direct computation of the 3072-point DFT would require 9,437,184
complex multiplications and 9,434,112 complex additions.
__

Example E11.11: A 1024-point DFT of a length-1000 sequence x[n] is to be computed. How
many zero-valued samples should be appended to x[n] prior to the computation of the DFT?
What are the total number of complex multiplications and additions needed for the direct
evaluation of all DFT samples? What are the total number of complex multiplications and
additions needed if a Cooley-Tukey type FFT is used to compute the DFT samples?

Answer: (a) # of zero-valued samples to be added is 1024 – 1000 = 24.

(b) Direct computation of a 1024-point DFT of a length-1000 sequence requires
(1000)2 = 1,000,000 complex multiplications and 999 ×1000 = 999,000 complex additions.

(c) A 1024-point Cooley-Tukey type FFT algorithm requires 512 × log2 1024() = 5,120 complex
multiplications and 1024 × log2 1024() = 10,240 complex additions.
__

Example E11.12: Determine the 9-bit sign-magnitude, ones'-complement, and two's-
complement representations of the negative decimal fractions –0.773437510.

Answer: (i) Signed-magnitude representation = 1∆ 11000110
 (ii) Ones'-complement representation = 1∆ 00111001
 (iii) Two's-complement representation = 1∆ 00111010
__

Example E11.13: Develop the signed-digit (SD) representation of the binary number
0∆11101101.

Answer: SD-representation = 0∆00 1 101 11 ,
__

Additional Examples of Chapter 11:
DSP Algorithm Implementation

 - 12 -

Example E11.14: Perform the binary addition 0∆10101+ 0∆01111.
Answer:

← carry1 1 1 1 1
0 ∆ 1 0 1 0 1
0 ∆ 0 1 1 1 1
1 ∆ 0 0 1 0 0

+

As the sign bit is a 1 there has been an overflow and the sum is not correct.
__

Example E11.15: Evaluate the difference 0∆10101− 0∆01111 by performing the binary
addition of a positive fraction and a negative number represented in two's-complement form.

Answer: The difference of the two positive binary fractions 0∆10101− 0∆01111 can be carried
out as an addition of the positive binary fraction 0∆10101 and the two's-complement
representation of −0 ∆01111 which is given by 1∆10001. The process is illustrated below:

1 1
0 ∆ 1 0 1 0 1
1 ∆ 1 0 0 0 1
0 ∆ 0 0 1 1 01

↑
drop

← carry

+

The extra bit 1 on the left of the sign bit is dropped resulting in 0∆ 00110 which is the correct
difference.
__

