F.E. - CBShs - Sem-II - AM-II - 13/05/2015

(REVISED COURSE) QP Code: 1037

(3 Hours) [Total Marks: 80

N.B. (1) Question no. 1 is compulsory.

- (2) Solve any three questions from the remaining six questions
- (3) Each questions carry equal marks.

1. (a) Evaluate
$$\int_{0}^{\infty} \frac{x^4}{4^x} dx$$

(b) Find P.I. of
$$(D^2-4D+4)y = e^{x}+\cos 2x$$

(c) Show that
$$\nabla = 1 - E^{-1}$$

(d) Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1+x^2}} \frac{dydx}{1+x^2+y^2}$$

(e) Solve
$$\left(1 + e^{x/y}\right) dx + e^{x/y} \left(1 - \frac{x}{y}\right) dy = 0$$

(f) Evaluate
$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dxdy$$
 by changing to polar co-ordinates

2. (a) Solve
$$y^4 dx = (x^{-3/4} - y^3 x) dy$$

$$\int_{0}^{1} \int_{x}^{\frac{y}{x}} \frac{y}{(1+xy)^{2}(1+y^{2})} dy dx$$

(c) (1) P.T.
$$\int_{0}^{\infty} \frac{x^{m-1}}{(a+bx)^{m+n}} dx = \frac{1}{a^{n}b^{m}} \beta(m,n)$$

(2) P.T.
$$\int_{0}^{\infty} \frac{\log(1 + ax^2)}{x^2} dx = \pi \sqrt{a}$$
, where $a > 0$

3. (a) Evaluate
$$\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y+z} dz dy dx$$

(b) Find the area bounded between the parabola
$$x^2=4$$
ay and $x^2=-4$ a (y-2a)

[TURN OVER

2

8

6

8

6

6

8

(c) Solve by the method of variation of parameters

$$\frac{d^2y}{dx^2} + y = \sec x \tan x$$

4. (a) Find the length of the cardioid $r = a(1 - \cos \theta)$ lying outside the circle $r = a\cos \theta$

(b) Solve
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = 2xe^{3x} + 3e^x \cos 2x$$

(c) Using R.K. Method of fourth order, solve.

$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$$
 given y(0) = 1 at x = 0.2, 0.4

- 5. (a) Solve $x \sin x dy + (xy\cos x y\sin x 2)dx = 0$
 - (b) Solve $\frac{dy}{dx} = 2 + \sqrt{xy}$ with $x_0 = 1.2$, $y_0 = 1.6403$ by modified Euler's method, for x = 1.4 correct to 4-decimal places, (taking h=0.2)
 - (c) Evaluate $\int_{0}^{3} x f(x) dx$ by
 - (a) Trapezoidal rule
 - (b) Simpson's 1/3rd rule using the following table

х	0	1	2	3	4	5	6
f(x)	0.146	0.161	0.176	9.190	0.204	0.217	0.230

6. (a) The charge Q on the plate of a condensor of Capacity C charged through a resistance R by a steady voltage V satisfies the differential equation

$$R\frac{dQ}{dt} + \frac{Q}{c} = V$$
, If $Q = 0$ at $t = 0$, show that $i = \frac{V}{R}e^{-\frac{1}{N}C}$ $\therefore i = \frac{dQ}{dt}$

- (b) Evaluate $\iint_A x^2 dx dy$ where A is the region in the first quadrant bounded by the hyperbola xy = 16 and the lines y = x, y = 0 and x = 8.
- (c) Find the volume of the tetrahedron bounded by the planes, x = 0, y = 0, z = 0 and x + y + z = a