Heal Transfer

QP Code: 3267

(3 Hours)

[Total Marks: 80

Question no.1 is compulsory.

Attempt any THREE from question no. 2 to 6.

Use illustrative diagrams where ever possible.

Q1) Solve any Four

20

- a) What is meant by film condensation and dropwise condensation?
- b) What is Fin? What are the various types of fins?
- c) Explain the number of transfer units (NTU).
- d) Define Thermal Diffusivity and state its significance.
- e) Define: Radiosity and Irradiation.
- Q2) a) Derive the relation for heat transfer through fin with insulated tip. State the assumptions clearly.
- 03

10

b) Explain the term 'Time Constant' of a thermocouple.

- 07
- c) A copper wire of radius 0.5 mm is insulated uniformly with plastic (k = 0.5 W/m K) sheathing 1 mm thick. The wire is exposed to atmosphere at 30°C and the outside surface coefficient is 8 W/m² K. Find the maximum safe current carried by the wire so that no part of the insulated plastic is above 75°C. Also calculate critical thickness of insulation. For copper: thermal conductivity = 400 W/m K, specific electrical resistance = 2 X 10⁻⁸ ohm-m.
- Q3) a) Using dimensional analysis, derive an expression for forced convection:-

08

80

 $Nu = Constant X (Re)^m X (Pr)^n$

b) Air at atmospheric pressure and 20°C flows with 6 m/s velocity through main trunk duct of air conditioning system. The duct is rectangular in cross-section and measures 40 cm X 80 cm. Determine heat loss per meter length of duct corresponding to unit temperature difference.

The relevant thermo-physical properties of air are: $v = 15 \times 10^{-6}$, $\alpha = 7.7 \times 10^{-2} \text{ m}^2/\text{hr}$, k = 0.026 W/m-deg.x.

Use Nu = $0.023 \text{ (Re)}^{0.8} \text{ X (Pr)}^{0.4}$

TURN OVER

JP-Con. 11957-15.

04 What is meant by Fouling in Heat Exchangers c) Distinguish between specular and diffuse radiation. Q4) a) Prove that the total emissive power of black surface is π time the intensity of radiation. b) 16.5 kg/s of the product at 650° C ($c_p = 3.55 \text{ kJ/kg K}$), in a chemical plant, are to be used 10 to heat 20.5 kg/s of the incoming fluid from 100° C ($c_p = 4.2$ kJ/kg K). If the overall heat transfer coefficient is 0.95 kW/m² K and the installed heat transfer surface is 44 m², calculate the fluid outlet temperature for the counter flow and parallel flow arrangements. Derive the relationship between the effectiveness and the number of transfer units for a 10 Q5) a) parallel flow heat exchanger. A thermocouple indicates a temperature of 800°C when placed in a pipeline where a hot 05 gas is flowing at 870°C. If the convective heat transfer coefficient between the thermocouple and gas is 60 W/m²K, find the duct wall temperature. ε (thermocouple) = 0.5 c) A thin copper sphere with its internal surface highly oxidised, has a diameter of 20 cm. 05 How small a hole must be made in the sphere to make an opening that will have an absorptivity of 0.9? Write a short note (any Two) 8.0 Q6) a) 1) Heisler chart 2) Importance of numerical methods Heat Pipe Draw the boiling curve and identify the different boiling regimes 05 A 15 mm diameter mild steel sphere (k = 42 W/m °C) is exposed to cooling airflow at 20° C resulting in the convective coefficient h = 120 W/m² °C. Determine the following: (i) Time required to cool the sphere from 550°C to 90°C. (ii)Instantaneous heat transfer rate 2 minutes after the start of cooling. For mild steel take: $\rho = 7850 \text{ kg/m}^3$, $c = 475 \text{ J/kg}^0\text{C}$, $\alpha = 0.045 \text{ m}^2\text{/h}$

JP-Con. 11957-15.