TE - sem - V - Mechanicay

HMT (OID).

4/6/15 723

QP Code: 3723

(OLD COURSE)

(3 Hours)

[Total Marks: 100

Instructions:

1) (Question	No-1 is	com	pulsory
------	----------	---------	-----	---------

- 2) Answer any 4 from the remaining.
- 3) Assume suitable data if necessary

Q1		Answer any 4 questions	/ [0.0]
-	a)	What is hydrodynamic and thermal boundary layer?	[20]
	b)		
	2,	Define thermal conductivity, thermal resistance and thermal conductance	
	c)		
		Define Fin efficiency and Fin effectiveness	
	d)	What is the mode of heat transfer in Vacuum? Define absorptivity,	
		reflectivity and transmissivity.	
-	e)	How do the Heat exchangers are classified?	
Q2	a)	What is overall heat transfer coefficient?	[4]
	b)	A brick (k = 1.2W/mK) wall 0.15 m thick separates combustion gases	[6]
		in a furnace from the atmospheric air at 30°C. The outside surface	
		temperature is 100°C while the convective heat transfer coefficient is	
		20W/m ² K. Find the inner surface temperature of the brick wall.	
	c)	Derive the general three dimensional steady state differential	[12]
		equation for conduction without heat generation in Cartesian co-	[12]
		ordinates for isotropic material	
Q3	a)	What is lumped system analysis? When is it applicable?	[4]
	b)	A solid copper sphere of 10 cm diameter (ρ =8954 kg/m³, C_p =383	
		J/kg-K, k= 386 W/m K), initially at a uniform temperature $t_i = 250$ °C, is	[10]
		suddenly immersed in a fluid which is maintained at a uniform	
		temperature t =50°C. The heat transfer as efficient to	
		temperature $t_a = 50^{\circ}C$. The heat transfer coefficient between the	
		sphere and the fluid is h=200 W/m²-K. Determine the temperature of	
	c)	the copper block 5 minutes after the immersion.	
Q4	a)	Define Fick's law of diffusion with description.	[6]
Q4		Derive an equation for finding LMTD of a parallel flow heat exchanger	[10]
	b)	A product in a chemical plant (16.5kg/sec) at 650°C (cp = 3.55	[10]
		KJ/kg C) is used to heat 20.5kg/sec of the incoming fluid from 100°C	
		(cp. 4.2 kJ/kg°C). If the overall heat transfer coefficient is	
		0.95kW/m ² °C and the installed heat transfer surface is 44m ²	
		calculate the fluid out let temperatures for the parallel flow and	
	. M.	counter flow arrangements.	
Q5	a)	Define shape factor. What are the properties of shape factor.	[6]
1)	b)	With the help of Buckingham π -theorem show that for a forced	[10]
		convection $Nu = C Re^m Pr^n$	[TO]
	c)	Define Radiosity and Irradiation.	[4]

TURN OVER

[4]

RJ-Con. 11993-15.

- Q6 a) Assuming that a man can be represented by a cylinder of 350 mm [10] diameter and 1.65 m height with a surface temperature of 28°C. Calculate the heat he would lose while standing in a wind of 30 kmph at 12°C. Use the co-relation Nu = 0.027 (Re) 0.805 (Pr) 1/3. Properties of air at 20°C are k=2.59 x 10 -2 W/m°C, ϑ =15.0 x10-6 m²/sec, Pr =0.707.
 - b) An electric wire of 0.25 mm diameter, ε =0.4 is placed within a tube [10] of 2.5 mm diameter, ε =0.6 having negligible thickness. This tube in turn is placed concentrically within a tube of 5 mm diameter, ε =0.7. Annular spaces can be assumed to be completely evacuated if the surface temperature of outer tube is maintained at 5°C, what must be the temperature of wire so as to maintain the temperature of the inner tube at 120 °C.
- Q7 a) Assuming sun to be a black body emitting radiation with maximum [6] intensity at wavelength, $\lambda = 0.49 \mu m$. Calculate the surface temperature of the sun and the heat flux at the surface. (Stefan Boltzmann Constant = 5.67 x 10⁻⁸)
 - b) A longitudinal copper fin (k=380W/m-K) 600 mm long and 5 mm [8] diameter is exposed to an air stream at 20°C. The convective heat transfer coefficient is 20 W/m²-K. If the fin base temperature is 150°C, determine the rate of heat transfer and Fin efficiency.
 - c) Define Reynolds number & Grashoff number by explaining the [6] significance of each number.

RJ-Con. 11993-15.