Sem-I CBSGS Sub:- P.O.C.

QP Code: 13454

Total Ma	rks : '	70	Duration: 3Hrs				
N.B.: 1. A	All qu	estions are compulsory	+				
2.]	Figure	es to right indicate full marks					
Q. No.1.	[A] i)			(5)			
,	ii)	Turnover number.					
	iii)	Equilibrium kinetics.					
	iv)	Correlation.	* *				
	V.)	Charge transfer complex					
	vi)	Closed shell repulsion					
	[B]	Fill in the blanks (Any five):		(5)			
	i)						
	ii)						
	,	is					
	iii)		7-axis				
iv) The rate constant of a first order reaction whose half life is 3.25 hr is							
	v)						
	vi)	Number of bonds between two atoms is called					
	*1)	Trained of bonds betyroon two atoms is baned	·				
	[C]	Match the following:		(5)			
	[C]	A	В	(5)			
		i) Symmetry elements in water molecule	a) Tetrahedral				
		ii) Valence electrons of Fe (At. No. 26)	b) π symmetry				
		iii) Shape of molecule with 2 bonding pairs	c) Organic charge transfer complex				
		and 2 lone pairs of electrons as per VSEPR					
		iv) d _{xy} orbital	d) C ₂ axis, σ _v plane of symmetry				
		v) Benzene-tetracyanoethene	e) $3d^6$, $4s^2$				
Q. No.2.	[A]	Draw resonating structure for the following-		(2)			
	[]						
		N O					
		i) ii) iii					
	[B] Explain second order perturbation with the help of a suitable example.						
	[C] Explain secondary isotope effect with an example.						
	[D]	Enlist different methods of catalysis. Give suita	ble example for each.	(3)			
		P. T.					
Q. No.3.	[A]	Mention the symmetry operations for MH ₃ system. Indicate similarity and differences (3 between molecular orbitals of CH ₃ , BH ₃ and NH ₃ (molecular orbital diagram is not					
		expected).					
* 3	[B] Justify on the basis of MOT: In an isolated water molecule in the gas phase, the lone						
	pairs are not identical.						
Write a note on determination of activation parameters using Eyring's plot.							
[D] What is half life of a reaction? Derive equation for half life of a first order reaction							
[D] What is half life of a reaction? Derive equation for half life of a first order reaction							

Q. No.4.	[A]	What are similarities and differences between MOT and VBT?					
70	[B]	State any three rules of QMOT			(3)		
[C] Differentiate between first order and second order kinetics.					(3)		
[D] Discuss phase transfer catalysis with an example.					(2)		
. ,							
Q. No.5.	[A]	Give reasons for the following:					
	i)	The bond angle in H ₂ O molecule is smaller than tetrahedral bond angles.					
	ii)	As more chlorine atoms are attached to methane, molecular dipole decreases.					
	iii)	C-I bonds are more reactive than C-Cl bonds in reactions like S _N 2 and E2.					
3	B	Explain the concept of hyperconjugation using a suitable example. (3)					
*	ICI	1 0 146					
87	D	Give the classification of charge transfer complexes with suitable examples. (3)					
Q. No.6.	[A]						
231		Molecule	Hybridization state of	Molecular shape			
			the underlined atom	V. 7			
		i) <u>Be</u> Cl ₂					
		ii) <u>C</u> H ₄		8.8			
		iii) <u>Si</u> Br ₄	9	wiconerio.			
	BI	Write a note on general base catalysis. (4)					
	[C]	C] Draw a reaction co-ordinate diagram for a chemical reaction with following characteristics:					
	i)	Two step exothermic reaction.					
	ii)	Transition state of first step is more stable than transition state of second step.					
	[D]	Explain reactivity versus selectivity principle. (2)					