Charles I

TE-sem-VI-CBGS- avil

TE-TT

8/12/15

(3 Hours)

Q.P. Code: 6378

[Total Marks: 80

Instructions

- 1. $Q\ 1$ is compulsory. Answer Any three out of the remaining questions.
- 2. Legible handwriting, neat & labeled sketches will be appreciated.

Q.1		(All answers in the question should be brief and to the point.)	(20)
	a	Enlist the different organizations which plan & fund the construction of roads in India.	03
	b	Draw a neat sketch showing different components of a bridge.	02
	C	State the values for:	04
		i) Design speed for state highways in mountainous terrain.	1
		ii) Camber for WBM roads.	
		iii) Minimum ductility of bitumen as per IRC.	
		iv) Slope of an embankment in uninundated condition.	
	d	Enlist the different loads and stresses to be considered in the design of bridges.	03
	e	Mention the purpose of provision of expansion and contraction joints in cement concrete	03
		pavement.	
	f		03
	^	island in an urban section:	
		i) Design speed xiti) Entrance and exit angle. iii) Radius at entry.	
		iv) Radius at entry) v) Radius of central island. vi) PCU for passenger bus.	
	g	You are being asked to identify a parking space in a city. Which traffic studies will you carry	02
	Ь	out?	02
			,
Q.2			(20)
Q.2	а	Define Stopping sight distance. Calculate the SSD required to avoid head on collision of two	10
	а	cars approaching from opposite direction at 65 & 55 kmph. Assume a reaction time of 2.5	10
		sec, co-efficient of friction as 0.6 & brake efficiency of 50 % in either case.	
	h	A highway has a horizontal curve of radius 280 metres. It is observed that many vehicles are	10
	U	off-tracked on this curve. What may be the reason for this? What will you do under such	10
		circumstances? The highway has a design sped of 70 kmph, width of 7.50 metres and wheel	
		base of longest vehicle using the highway is 8 metres.	
		base of foligest vehicle using the highway is e-moties.	
Q.3			(20)
Q.S		Explain the purpose of: i) Origin and destination study. ii) Accident study	12
	a b	Explain CBR method of testing of soil subgrade.	08
	D	Explain CBR method of testing of soil subgrade.	,
0.4			(20)
Q.4		The details of a 2 lane RCC pavement are as follows:	13
	a	i) Slab thickness = 25 cm (ii) Design wheel load = 5200 kg.	15
		iii) Expansion joint width = 2.5 cm iv) Radius of relative stiffness = 80 cm.	
,		v) Maximum variation in temperature = 25 deg C. vi) Co-efficient of friction = 1.5	
		vii) Load capacity of dowel group = 40 % viii) Thermal coefficient of concrete = 10 ⁻³ /deg C.	
		ix) Unit weight of concrete = 2400 kg/m ³ x) Allowable tension in concrete = 0.8 kg/cm ²	
		xi) Values of Fs, Fb, and Ff are 1000 kg/cm ² ,100 kg/cm ² ,1400 kg/cm ² respectively.	
		Design the spacing of expansion and contraction joint, size and spacing of dowel bars and draw	
		neat sketch showing the location of dowel bars and tie bars.	07
	b	Write a detailed note on different types of bearings.	07

TURN OVER

MD-Con. 10374-15.

2	Q.P.	Code	8	6378
---	------	------	---	------

Q.5			(20
	a	Define economic span for a bridge and derive the equation for the same. The cost of one pier and foundation is Rs 100,000. The constant of variation for superstructure can be taken as	07
		1	
		3.5.Calculate the economic span.	,
	b	Write notes on: i) Information signs. ii) Highway drainage.	08
	С	Explain Area-velocity method of determination of design discharge for a bridge.	05
Q 6			(20
	a	Calculate the length of a transition curve in plain and rolling terrain for the following data:	12
		i) Design speed = 80 kmph. ii) Pavement is rotated about the centerline.	
		iii) Rate of introduction of superelevation = 1 in 150. iv) Superelevation provided = 7 %	
		v) Width of pavement including extra widening = 7.6 m vi) Radius of circular curve = 240 m.	
			0.0
	Ь	What is equilibrium superelevation? Design the superelevation for a horizontal curve of radius	08
		300 metres having mixed traffic condition for a design speed of 80 kmph.	

MD-Con. 10374-15.

2