SE/ME/Sem-III/CBSGS/IFAH/ 27/11/2015

ThermodyNamics

Time. 3.00 PA to 6.00p

QP Code: 5103

(3 Hours)

[Total Marks: 80]

N. B. :

- (1) Question No. 1 is compulsory
- (2) Solve any three questions from remaining five questions
- (3) Assume suitable data
- (4) Use of Mollier Chart and Steam Table is permitted
- Q1) Answer any Five of the following:

20

- a) State the first law of thermodynamics for the Closed system undergoing a cycle.
- b) Explain Zeroth Law of Thermodynamics.
- c) Show that entropy is property of system.
- d) Define Availability and Unavailability.
- e) Define COP for refrigerator and heat pump. Derive relation between them.
- f) Define (i) Dryness Fraction
- (ii) Sensible heat of water
- (iii) Latent heat of vapourisation
- (iv) Superheated Steam
- Q2) a) State the Kelvin Planck and Clausius statement and establish the equivalence of both for Second law of Thermodynamics.

[08]

- b) One kg of dry saturated steam undergoes an isentropic expansion process from 10 bar to 1 bar. Determine the final condition of steam and the work done when the expansion takes place.
 - (i) In a cylinder fitted with a piston
 - (ii) In a turbine

[12]

- Q3) a) State and derive Steady flow energy equation and apply it to a boiler, condenser, nozzle and turbine.
 - b) Liquid Octane C_8H_{18} at 25° C is used as fuel. Air used is 150% of theoretical air and is supplied at 25° C. Assume a complete combustion and the product leaves the combustion chamber at 1600K. Calculate heat transfer per kg mole of fuel. Use the following data [12]

Substance	h _f (MJ/Kmole)	h _{298K} (MJ/Kmole)	
C_8H_{18}	-250	-	-
02	nu .	8.68	52.96
N ₂	_	8.67	50.57
H_2O (gas)	-241.8	9.9	62.75
CO ₂	-393.5	9.36	76.95

[TURN OVER

MD-Con. 8330 -15.

Q4)	a) Derive an expression for efficiency of Diesel of	ycle.	[08]
	b) A mass of air initially at 206° C is at a press air is expanded at constant pressure to 0.09m carried out, followed by a constant temperature processes are reversible. Sketch the cycle on preceived and heat rejected in the cycle. Take R = 0.287 KJ/KgK, C, = 0.713 KJ/Kg	a polytropic process with $n = 1.5$ is then process which completes the cycle. All the essure-volume diagram and find the heat	[12]
Q5)	a) Explain Maxwell relations.		[04]
	b) Explain Clausius - Clapyeron Equation		[04]
	c) An engine working on the Otto Cycle is supplied The compression ratio is 8. Heat supplied is 21 and temperature of the cycle, the cycle efficient	00 KJ/Kg. Calculate the maximum pressure	[12]
Q6)	a) Explain		
		Enthalpy of Formation) Adiabatic flame temperature	[80]
	b) A reversible engine receives heat from two the temperatures of 750K and 500K. The engine d to a heat sink at 250K. Determine the heat sup efficiency of the engine.	evelops 100KW and rejects 3600KJ/min of heat	[12]