BE-Sem-VII - CBGS-EXTC 10/12/15 Q.P. Code: **6015** | | | (3 Hours) [Total Marks | : 80 | |----|--------------------------|---|----------| | N | .B. : | Question No.1 is compulsory. Solve any three questions from the remaining. Assume suitable data if necessary. | | | 1. | (a)
(b)
(c)
(d) | Design circulator using magic tees. Explain Travelling wave tube as an amplifier. Explain the operation of 2-hole Directional coupler with s-matrix. Explain Doppler shift and its role in pulsed and CW radar. | 5 5 5 | | 2. | (a) | The terminating impedance Z_L is $100+j100\Omega$ and the characteristics impedance Z_0 of the line and stub is 50Ω . The first stub is placed at 0.40 λ away from the load. The spacing between the two stubs is $3\lambda/8$. Determine the length of the short circuited stubs when the match is achieved. | 10 | | | (b) | Explain instrument landing system for aircraft navigation. | 10 | | 3. | (a) | Derive the wave equation for a TE wave and obtain all the field components in a circular waveguide. | 10 | | | (b) | What is the importance of beam coupling coefficient? Derive the equation of velocity modulation in klystron. | 10 | | 4. | (a)
(b) | Explain the significane of RWH model and two valley model in Gunn diode. With a suitable diagram, explain the working on conical scan tracking radar. Explain the various factors that need to be considered in determining the optimum squint angle. | 10
10 | | 5. | (a) | Draw and explain with block diagram of MTI radar system. What are its limitations. | 10 | | | (b) | Discuss the power frequency, current frequency and power gain frequency limitations with refrence to a microwave transistor. | 10 | | 6. | (a) | Design two lumped element L section matching network at 500 MHz to transform $Z_L = 200 - j100\Omega$ to a 100 Ω transmission line. Use Smith Chart. | 10 | | | (b)
(c) | Write a short note one backward wave oscilator. A radar operating at 1.5 GHz uses a peak pulse power of 2.5 MW and have a range of 100 nmi for objects whose radar cross section is 1m^2 . If the minimum receivable power of the receiver is 2×10^{-13} Watt. What is the smallest diameter of the antenna reflector could have, assuming it to be a full paraboloid with η =0.65. | 5 5 |