EE-016-Sem-V-EFW

18/11/2015

QP Code: 1607

Duration: 3 hrs

Total Marks: 100

NOTE:

- 1. Question No 1 is compulsory
- 2. Solve any four out of remaining six questions
- 3. Figures on right hand indicate full marks
- 4. Assume suitable data if necessary

Q1) Solve any Four

[20]

- a. Prove that the line integral of H around a single closed path is equal to the current enclosed by that nath
- b. A charge of Q coulombs is placed at (0,0,0) and same amount of charge is also place at (10,0,0) find out E as a function of x along x-axis for 0≤x≤10.
- c. The circular loop conductor having a radius of 0.15 m is placed in the X-Y plane. This loop consists of a resistance of 20Ω , if the magnetic flux density is \overline{B} = 0.5sin(10^3 t) \overline{az} tesla, find the current flowing through this loop.
- d. Prove that curl of gradient of a scalar function is zero i.e. $\nabla X (\nabla \Phi) = 0$.
- e. Prove the differential relation $\overline{E} = -\nabla V$.
- f. Define Gauss's law for electric and magnetic field in static field.

Q2)

[20]

- a. Charge lies in the z = -3m plane in the form of a square sheet defined by $-2 \le x \le 2m$, $-2 \le y \le 2m$ with charge $\rho s = 2(x^2 + y^2 + 9)^{3/2} \eta c/m^2$.
- b. Given that $\overline{D} = (5r^2/4)$ ar in spherical coordinates, evaluate both sides of the divergence theorem for the volume enclosed between r = 1 and r = 2.

Q3)

[20]

- a. If $V = 20\sin\theta/r^3$ (volts) in free space, find
 - 1. Pv at $P(r=2,\theta=30^{\circ},\Phi=0)$,
 - 2. The total charge within the spherical shell 1<r<2m.
- b. An E-field is given by $\overline{E} = 4x\overline{ax} + 2\overline{ay}$ V/m. Determine by direct integration the work required to move a unit positive charge along the curve xy=4 from (2, 2) to (4, 1).

Q4)

[20]

- a. The region x<0 contains dielectric medium for which Er1=4, while the region x>0 is characterized by Er2=2, if $\overline{E}1=50$ ax-30ay+60az Kv/m. find 1. $\overline{E}n_1$, 2.0₁ 3. $\overline{E}t_1$, 4. \overline{E}_2 , 5. 0₂.
- b. Derive the expression for magnetic field intensity on the axis of a circular loop.

[TURN OVER]

-2- [20]

- a. A radial field $\overline{H} = 2.39 \times 10^6/r \cos \Phi \ ar \ (A/m)$ exits in free space. Find the magnetic flux Φ crossing the surface defined by $-\pi/4 \le \Phi \le \pi/4$, $0 \le z \le 1m$.
- b. Let the current density in cylindrical system be
 J = 2rcos²Φ ār-rsin2Φ āΦ (A/m²)
 Within the region 2.1<r<2.5, 0<Φ<0.1rad, 6<z<6.1. Find the total current I crossing the surface r= 2.2, 0<Φ<0.1rad, 6<z<6.1 in the ar direction also evaluate V J at P(r=2.5,Φ=0.08 and z=6.05).

Q6)

- a. Derive the Maxwell equation for static field.
- b. A lossy dielectric has $\mu r = 1$ and $\epsilon r = 1$, $\sigma = 2 \times 10^{-8}$ (s/m). An electric field $\epsilon = 2000 \sin \omega t$ az V/m at a certain point in the dielectric.
 - 1. At what frequency the conduction and displacement current densities be equal?
 - 2. At this frequency calculate the instantaneous displacement current density.

Q7) [20]

- a. Derive the expression for pointing theorem and state significance of each term.
- b. Starting from Maxwell equation obtain wave equation for the field E and H for free space.