SE-sem-IV-01d-compréses OS 22/11/15

QP Code: 1540

(3 Hours) [Total Marks: 100

N. B.: (1) Question No. 1 is compulsory.

- (2) Attempt any four questions out of remaining.
- (3) Assume suitable data if necessary.

1.	(a)	What is operating system? Explain functions of operating system.	5
	(b)	Explain microkernel architecture.	3
	(c)	Explain role of PCB.	√ 5
	(d)	What is the effect of page size on hit ratio.	5
2.	(a).	Explain concurrency mechanisms in UNIX.	10
	(b)	Explain file organization methods.	10
3.	(a)	Explain deadlock detection, prevention and recovery.	10
	(b)	Explain I/O buffering.	10

Process	Allocation			Max				Available				
	A	В	C	D	A	В	E	D	A	В	C	D
p ₀	0	0	1	2	0	0	1	2	1	5	2	0
P ₁	1	0	0	0	1	5.7	5	0				
P_2	1	3	5	4	25	3	5	6				
P ₃	0	6	3	2	0	6	5	2 .				
P_{Δ}	0	0	1	47	0	6	5	6				

Answer the following questions using Banker's algorithm.

- (a) What is the content of Need matrix?
- (b) Is the system in safe state?
- (c) If request from P₁ arrives for (0, 4, 2, 0), can the request be granted immediately?
- (b) Explain segmentation in detail.

4. (a) Consider following system snapshot.

10

10

QP-Con.12306-15.

[TURN OVER

2

123, 874, 692, 475, 105, 376.

Perform computation (calculate total distance) for following scheduling algorithms.

FIFO, SSTF, SCAN, LOOK.

(b) Explain solution to infinite - buffer producer - consumer problem using semaphores.

(a) Explain the components of windows 2000 system. 10

(b) Explain various page replacement policies. 10

Write short notes on (any four) :-20

(a) Inode

- (b) Process State Transition Diagram
- (c) Compaction
- (d) Preemptive and Non-preemptive scheduling
- (e) Symmetric multiprocessing

QP-Con.12306-15.

10

10