16/12/15

Q.P. Code: 1219

(OLD COURSE)

(3 Hours)

Total Marks: 100

- N.B. (1) Question No. 1 is compulsory.
 - (2) Attempt any four out of remaining six questions.
 - (3) Make suitable assumptions if required and justify the same.
 - Volume of a certain solid V is calculated using formula $V = 64 \frac{xy^4}{r^2}$ where x, y & z denote three dimensions. If maximum possible errors in the x, y & z is limited to plus minus 0.001. Estimate the maximum probable error in the calculation of volume if the normal dimension x, y & z are equal to unity.
 - (b) Define the operators $\Delta, \nabla, \delta, \mu \& E$. Prove that

5

- i) $2\mu\delta = \Delta + \nabla$
- ii) $E = 1 + \Delta$
- (c) Using Picard's method solve

5

- $\frac{dy}{dx} = 1 + xy$ such that y = 0 when x = 0.
- (d) Derive the equation for Regula falsi method using geometrical interpretation.
- 5
- (a) List the bracketing methods and open methods and find the real root of 2. 10 the equation $xe^x - \cos x = 0$ using Newton-Raphson method correct to three decimal places.
 - (b) Solve the following equations by Gauss Seidel method. 27x+6y-z=85, 6x+15y+2z=72, x+y+54z=110.
- 10
- (a) From the following table find the number of students who obtained 3. marks less than 45.

	Marks	30-40	40-50	50-60	60-70	
4	No. of students	31	42	51	35	10

(b) Using Newton's divided difference formula, find the value of f(9) from the following table.

5 11 13 17 f(x)150 392 1452 2366 5202

10

[TURN OVER

10

10

5

10

5

4. (a) Write a program for Lagrange's interpolation method and using this formula, find the value of y when x = 10 from the following table.

x	5	6	9	11
y	12	13	14	16

(b) Fit a second degree parabola to the following data:

X	2	4	5	6	8	11
у	18	12	10	8	7	5

5. (a) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using Trapezoidal, Simpson's $\frac{1}{3}^{rd}$ and Simpson's $\frac{3}{8}^{th}$ rule.

(b) Solve $\frac{dy}{dx} = x^2 + y$ with $x_0 = 0$, $y_0 = 1$ by Euler's modified formula find the value of y when x = 0.5 taking h = 0.25.

6. (a) Solve $\frac{dy}{dx} = x + y^2$ with initial conditions y(1) = 1.5 and find y at x = 1.2, x = 1.4 by Runge - Kutta Method of Fourth Order taking h = 0.2.

- (b) Solve the following set of equations using Gauss Elimination method. 10 2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 9z = 16.
- 7. (a) Explain the propagation of errors.

(b) Using Adams – Bashforth method, obtain the solution of $\frac{dy}{dx} = x - y^2$ at y(0.8), given values

$x \downarrow 0$	0.2	0.4	0.6
у 0	0.0200	0.0795	0.1762

(c) Write a short note on Golden section search.