
"Web Scalability "
Project Report

Submitted in partial fulfillment of the requirements for the degree of

Bachelor of Engineering

by

Patil Amit Suresh Archana (12CO53)

Mirsinge Ibad Ibrahim Saba(12CO42)

Tulve Shabab Kasim Shagufta(12CO62)

Siddique Asma Abdul Wahab Zaibunnisa (12CO14)

Supervisor

Prof. P.S. Lokhande

Co-Supervisor

Prof. Salman Samshi

Department of Computer Engineering,
School of Engineering and Technology

Anjuman-I-Islam’s Kalsekar Technical Campus
Plot No. 2 3, Sector -16, Near Thana Naka, Khanda Gaon,

New Panvel, Navi Mumbai. 410206
Academic Year : 2015-2016

CERTIFICATE

Department of Computer Engineering,
School of Engineering and Technology,

Anjuman-I-Islam’s Kalsekar Technical Campus
Khanda Gaon,New Panvel, Navi Mumbai. 410206

This is to certify that the project entitled Web Scalability is a bonafide work of Patil Amit
Suresh Archana (12CO53),Mirsinge Ibad Ibrahim Saba (12CO42) , Tulve Shabab Kasim
Shagufta (12CO62) ,Siddique Asma Abdul Wahab Zaibunnisa (12CO14) . Submitted to
the University of Mumbai in partial fulfillment of the requirement for the award of the degree
of Bachelor of Engineering in Department of Computer Engineering.

Prof. P.S Lokhande Prof.Salman Samshi

Supervisor/Guide Co-Supervisor/Guide

Prof. Tabrez Khan Dr. Abdul Razak Honnutagi

Head of Department Director

Project Approval for Bachelor of Engineering

This project entitled Web Scalability by Patil Amit Suresh Archana(12CO53) ,Mirsinge Ibad
Ibrahim Saba(12CO42) ,Tulve Shabab Kasim Shagufta(12CO62) ,Siddique Asma Abdul Wa-
hab Zaibunnisa(12CO14) is approved for the degree of Bachelor of Engineering in Depart-
ment of Computer Engineering.

Examiners

1.
2.

Supervisors

1.
2.

Chairman
.............................

Declaration

We declare that this written submission represents my ideas in my own words and where oth-
ers ideas or words have been included, We have adequately cited and referenced the original
sources. We also declare that we have adhered to all principles of academic honesty and in-
tegrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in my
submission. We understand that any violation of the above will be cause for disciplinary action
by the Institute and can also evoke penal action from the sources which have thus not been
properly cited or from whom proper permission has not been taken when needed.

Patil Amit Suresh Archana(12CO53).

Mirsinge Ibad Ibrahim Saba(12CO42).

Tulve Shabab Kasim Shagufta(12CO62).

Siddique Asma Abdul Wahab Zaibunnisa(12CO14).

Abstract

Tittle: Web Scalability

Web Scalability is the phenomenon when the incoming user requests on a server increases such
that it exceeds the server capability to handle them and the system is able to somehow cope up
with the increasing load. Since all servers can serve limited users if limit exceeds the server
will either slow down or will crash. In today world all businesses are dependent on internet, as
business grows the number of users accessing the web also increases which eventually grows
the load on servers. Our project provides a mechanism for the businesses carried over internet
to handle the icreasing amount of workload. The system provides an easy and handy solution to
manage the user requests by mapping them on available server with the help of load balancing.

Patil Amit Suresh Archana (12CO53)

Mirsinge Ibad Ibrahim Saba (12CO42)

Tulve Shabab Kasim Shagufta(12CO62)

Siddique Asma Abdul Wahab Zainbunnisa (12CO14)

B.E. (Computer Engineering)
University of Mumbai.

iv

Contents

Project Approval for Bachelor of Engineering . ii
Declaration . iii
Abstract . iv
Table of Contents . vii
List of Figures . viii
List of Tables . ix
Keywords And Glossary . x

1 Introduction 1
1.1 Statement of Project . 1
1.2 Motivation . 2

1.2.1 Advantage Over Current System . 2
1.2.2 Project Architecture . 3

1.3 Objective and Scope . 4
1.3.1 Objective . 4
1.3.2 Scope . 4

2 Literature Review 6
2.1 Scaling Web Sites Through Caching. 6

2.1.1 Pros . 7
2.1.2 Cons . 7
2.1.3 How to Overcome . 7

2.2 Web Scaling Frameworks for Web Services in the Cloud. 7
2.2.1 Pros . 8
2.2.2 Cons . 8
2.2.3 How to Overcome . 8

2.3 Scalability of Web-Based Electronic Commerce Systems 8
2.3.1 Pros . 9
2.3.2 Cons . 9
2.3.3 How to Overcome . 9

3 Requirement Analysis 10
3.1 Platform Requirement : . 10

v

3.1.1 Supportive Operating Systems : . 10
3.2 Software Requirement : . 10

3.2.1 Back End Software Requirement . 11
3.3 Hardware Requirement : . 11

3.3.1 Hardware Required For Project Development: 11

4 Project Design 12
4.1 Design Approach . 12
4.2 Software Architectural Designs . 12

4.2.1 Front End Designs . 14
4.2.2 Component Diagram . 16
4.2.3 Deployment Diagram . 17

4.3 Database Design . 18
4.3.1 E-R Diagram . 18
4.3.2 Activity Diagram . 19

5 Implementation Details 20
5.1 Assumptions And Dependencies . 20

5.1.1 Assumptions . 20
5.1.2 Dependencies . 20

5.2 Implementation Methodologies . 21
5.2.1 Modular Description of Project . 21

5.3 Detailed Analysis and Description of Project 22
5.3.1 Activity Diagram . 22

5.4 Usecase Report . 24
5.4.1 Usecase Report . 25
5.4.2 Class Diagram Report . 25

6 Results and Discussion 26
6.1 Test cases and Result . 26

6.1.1 Unit Testing . 26
6.1.2 Functional Testing . 27

7 Project Time Line 30
7.1 Project Time Line Matrix . 30
7.2 Project Time Line Chart . 31

8 Task Distribution 32
8.1 Distribution of Workload . 32

8.1.1 Scheduled Working Activities . 32
8.1.2 Members actvities or task . 33

9 Conclusion and Future Scope 36

vi

9.1 Conclusion . 36
9.2 Future Scope . 36

References 37

Own Publications 38

10 Appendix I 43
10.1 Webserver Stress Tool . 43

10.1.1 Features of Web Stress Tool . 43
10.1.2 Webserver Stress Tool can be used for various tests 44
10.1.3 Test result can be viewed as . 44

Acknowledgment 45

vii

List of Figures

1.1 System Architecture . 3

2.1 Basic system architecture. 9

4.1 Software architecture Design . 13
4.2 Front End Design . 14
4.3 Front End Design . 14
4.4 Front End Design . 15
4.5 Component Diagram of Scalability Design 16
4.6 Deployment Diagram of Scalability Design 17
4.7 E-R Diagram of Scalability Design . 18
4.8 Activity Diagram . 19

5.1 Activity Diagram . 22
5.2 ER Diagram . 24

6.1 Click Time hits/s ,Users/s. 27
6.2 Click Times and Errors. 28
6.3 Click Time,Hits/s,Users/s. 28
6.4 Click Time Error. 29
6.5 Click Time hits/s ,Users/s. 29

7.1 Time Line Matrix . 30
7.2 Time Line Chart . 31
7.3 Time Line Chart . 31

viii

List of Tables

5.1 Usecase Report . 25
5.2 Class Diagram Report . 25

8.1 Scheduled Working Activities . 32
8.2 Member Activities and Task . 35

ix

Keywords And Glossary

Keywords :

Scaling, Web Server Scaling, Caching, Load Balancer, Application level Scaling, Scalability.

Glossary :

A

•• Attribute :
Column of the table which describes property of the table.

• Application level Scaling :
Data aggregation is a type of data and information mining process where data is
searched, gathered and presented in a report-base.

C

• Caching :A comparison predicate uses arithmetic operators to compare column data to a
literal value.

G

• GUI: Graphical User Interface,is a type of interface that allows users to interact with
electronic devices through graphical icons and visual indicators such as secondary
notation, as opposed to text-based interfaces, typed command labels or text navigation.

L

• Load Balancer:Load balancing is a technique aiming at distributing workload in a
computer network, in order to optimally utilize resources, avoid overload and maximize
throughput.

M

• MySQL:SQL language.

x

P

• Php:Hypertext Preprocessor ,is a server-side scripting language designed for web
development but also used as a general-purpose programming language.

S

• Scalability: The ease with which a system or component can be modified to fit the
problem area.

• SQL: Structured Query Language is a special-purpose programming language designed
for managing data held in a database management system .

• Scaling: he ease with which a system or component can be modified to fit the problem
area.

xi

Chapter 1

Introduction

1.1 Statement of Project

Web scalability is a technique which is used to scale the servers. There is a capacity of
every server if limit exceeds the user wont get the requested site hence it is required to
scale the server in such way that it will handle more number of users. Over last decade
shopping sites have grown and so the users and it is needed to have the scaled system and
hence we improved the system by scaling it by using load balancing and caching tech-
niques.There are too many shopping sites present and they do not have a scaled system
hence they cannot maintain the load on the servers.
The term Web scalability means without increasing the hardware of the servers and with-
out increasing the number of the server we must handle the more request without degrad-
ing the response time.The available solutions are vertical scaling and horizontal scaling,
vertical scaling is increasing number of servers and horizontal scaling is increasing the
hardware of the server.[8]
We have designed the architecture which neither uses more number of servers nor hard-
ware of server is improvised, we are using the load balancing and caching techniques
which will handle the load more than current architecture.Scaling actually deals with
limited resources you need to meet the peak requirements.we get errors many times say-
ing that webpage not found its because the server has reached its limit and it wont serve
further.
In our proposed system such errors will not happen since we have the load balancing
and caching technique which will distribute the load such that there will not be such
errors.Techniques used load balancing and caching.

1

1.2. Motivation

1.2 Motivation

Now a days shopping is done hugely on internet. With gaining popularity of online shop-
ping, the users accessing the ecommerce web application is also increasing. This growth
in the number of users affects the efficiency of a system. Sometimes it is possible that
server may not respond to each and every user because the incoming request may exceed
the servers capacity to handle them. Every server possesses a limit to serve the user re-
quests if this limit exceeds it cannot serve the requests, this may cause a great loss to a
business website. Users cannot wait for long time so the response time should be as low
as possible. If the response time is more then the user might terminate the purchase of
product from the shopping website. Even on social networking sites there are huge num-
ber of users requesting the same web page at a same time so the servers may not serve all
users it may either slow down or it wont serve each and every user. Hence it is neccessary
to build a system that is scalable enough to overcome this issue. This motivated us to built
a scalable server.

1.2.1 Advantage Over Current System

Current system has too may drawbacks such as high response time,serving limited users
etc. Our proposed system is able to handle more no. of request than a current system
and have less response time. Since in todays world where most of the buying and selling
is done through website it is neccessary to have a scaled system. The current system is
not scaled proporely our system is properly scaled and hence can handle more load than
current system and also have the minimum response time than current system.Current
system architecture has many drawbacks and hence we have the improvised system ar-
chitecture.Our architecture consist enhanced load balancing and caching technique which
is not present in current system.

2

Chapter 1. Introduction

1.2.2 Project Architecture

Figure 1.1: System Architecture

The System Architecture consists of three modules:

– Load Balancer.

– Web Server.

– Database Server.

3

1.3. Objective and Scope

Load Balancer: Computer clusters rely on load balancing to distribute workload across
network links, CPUs, web servers, etc. A server farm is a common application of load
balancing, where multiple servers seamlessly provide a single Internet service. In this
case the load balancer accepts requests from external clients and forwards them to one
of the available backend servers according to a scheduling algorithm (e.g. round robin,
random choice, on a reported load basis, etc.) .Load balancers can be implmented using
dedicated hardware or ad-hoc software.

Web Server: Main work of web server is process HTTP or any other protocol request.
The primary function of a web server is to store, process and deliver web pages to clients.
The communication between client and server takes place using the Hypertext Transfer
Protocol (HTTP)[wiki]. In this Architecture the web server requests for web pages to
the application server which are stored in database. The request to the web server is
forwarded bt the load balancer, since load balancer calculates algorithms according to ge-
ographical areas, web page will also demand the page from application server according
to the need.

Database Server:The database is of course stateful, after very definition and function
of a database is to store application state. In fact, the state (application data) stored in a
database must be a permanent record of actions performed by end users, otherwise the
organization the application servers, or the application itself cannot function.

1.3 Objective and Scope

1.3.1 Objective

The objective of the proposed system is to scale a web server on application level that
is to use minimum hardware and scale the requests on server side. The proposed system
would have the capability to handle clients request more than its original limit. The
main objective of our proposed system is that the server should serve more and more
request without degrading the response time with minimum use of hardware and making
the system scalable.The scalable system has the potential to serve the more number of
request than the conventional system.To utilize the available resources in such a wa that
the system is completely scaled and have advantages over a current system.

1.3.2 Scope

Proposed system is domain independent therefore can be used in any application. Where
there is need to store the data and retrieving of data is done by non technical person or
naive user, this system is useful.

4

Chapter 1. Introduction

– Server will be capable of handling more concurrent user then conventional
server :The system can be used for many purpose in School and College .There
is a need of storage of student,teacher,cleark data .The detail about student fees,
result, document etc this data is usefull to student, teacher as well as to the admin-
istration department . Thus this data need to be stored in data base and native user
find difficult to interact with the SQl software thus the system can be used in School
and Colleges.

– Caching gives Boost to handle more concurrent user: In Hospital the patient,
medicane are the important attribute there is the need that detail of this attribute
need to be maintained so that one can get the information as required per their need
this data are important for the user the day when the doctor are availabe the detail
of the medicane present in the hosptial ,the day when the operation is to bee done
are the important document for the user as well hosptial staff thus this data need to
be stored in to the database thus interaction with this data form database need SQl
command thus creating a system that can easily used to communicate with normal
user in normal language that is English so that help to communicate with the system
with ease.

– Web security at client side of cookies:The system can be used in Railway ,Air
reservation purpose the detail of the user who have booked thier ticket the day the
trail and flight will leave the place and the day it will reach the destation . The num-
ber of the customer which are in the wating list so on this detail can be maintained
using the system and normal user can easily check for the detail like wise the system
can bee used for below purpose.

5

Chapter 2

Literature Review

2.1 Scaling Web Sites Through Caching.

A powerful concept for reducing the delay caused in processing request and saving band-
width is caching web resources. Here the resources refer to web pages. We find caches
at Web browsers, organization proxy server caches, Internet service providers, content
delivery networks (CDNs), and Web servers. A cache at the server side is mainly used
to reduce the time required for processing a request[4]. Server side caching is the act of
caching data on the server. Data can be cached anywhere and at any point on the server
that makes sense. It is common to cache commonly used data from the database to prevent
hitting the database every time the data is required. We cache the results from competition
scores since the operation is expensive in terms of both processor and database usage. It
is common to cache pages or page fragments so that they don’t need to be generated for
every visitor.

A cache-hit ratio is the number of times the database found something in cache divided
by the number of times it looked for some object in the cache. The higher the ratio, the
more effective the cache is at improving performance[4]. Taking into account the cache
hit ratios, the frequency of reference f to Web documents is inversely proportional to
the rank r, which is measured in terms of the document popularity. The most popular
document has r = 1, the second most popular has r = 2, and so on. This relationship,
called Zipf law, states that:

f = k/r . . . where k is a constant.

With the advancing growth in technology solutions are available which helps solve the
problem in smarter way. Use of cache is one of the way to scale such web applications at
cheap cost. With Web site caching, Web content accelerates because documents likely to
be requested are maintained in the cache[4]. This approach requires all incoming requests
to pass through the cache first. Consequently, the cache server must have the capacity to
handle all incoming traffic plus the cache update requests caused by cache misses.[4]

6

Chapter 2. Literature Review

2.1.1 Pros

– Faster access to valid cache resources.

– Saving on costly use of bandwidth.

– Providing cached resources even when origin server is down.

2.1.2 Cons

– Its hard to maintain the cache data if changes are made in any of the data we are
supposed to change the content from each and every cache server.

– If most of the request will be served by cache server the webserver will not be
utilized at it fullest and it will be the wastage of money.

– Complex architecture and hence not implementable on every system.

– Too much of hardware is utilized.

2.1.3 How to Overcome

– Simplified architecture which can be implementable on every sytem.

– Hardware should be minimised

2.2 Web Scaling Frameworks for Web Services in the
Cloud.

The concept of Web Scaling Frameworks (WSFs) in order to offload scaling to another
layer of abstraction. this models improves the scaling ability of the current system.Web
Application Frameworks (WAFs) focus on the creation of application logic and do not
offer integrated cloud scaling concepts.[5]

WSFs take over the responsibilities of scaling by embedding existing WAFs in a larger
system. The prototype they proposed in this work uses more components and a different
composition than the normal version . It implements a Scaled Application Version that
uses a WSF in combination with a WAF.[5]

7

2.3. Scalability of Web-Based Electronic Commerce Systems

2.2.1 Pros

Web scaling framework can triple the request throughput performance of single mchine.

Caching is highly used and hence maximised the scalability and performance of system.

2.2.2 Cons

– Complex architecture and hence not implementable on every system.

– Too much of hardware is utilized.

2.2.3 How to Overcome

– Simplified architecture which can be implementable on every sytem.

– Hardware should be minimised.

2.3 Scalability of Web-Based Electronic Commerce Sys-
tems

In a Web-based electronic commerce system, users browse product information offered
by an online store and submit requests to purchase selected items. From the userâTMs
perspective, response time is a factor that could impact the acceptability of electronic
commerce. This article is concerned with system architectures for online stores. Empha-
sis is placed on techniques to improve a systemâTMs capacity to support more users with-
out suffering a noticeable degradation in response time performance[3]. Such techniques
have been investigated as part of a Canadian Institute for Telecommunications Research
major project entitled Enabling Technology for Electronic Commerce Applications, de-
veloped in close collaboration with the IBMÂ R© Centre for Advanced Studies[3]. The
basic architecture of a Web-based electronic commerce system is first described along
with the types of data that need to be managed. Next, an overview of existing techniques
for improving system capacity is presented. Finally, highlights of research results ob-
tained as part of the CITR electronic commerce major project are discussed.

A typical Web-based electronic commerce system has a three-tier architecture: the Web
server, electronic commerce application server, and database system. The Web server is
a process that handles requests from users and returns the requested Web pages[3]. The
application server contains the business logic and accesses the database for information

8

Chapter 2. Literature Review

Figure 2.1: Basic system architecture.

such as catalogs, inventory level, and user information, such as registration data and shop-
ping cart content. The three components may reside on the same machine or on different
machines.

2.3.1 Pros

– Use of multiple server cluster means more availability of data.

– With mirror sites, information requested by users is made available at multiple
server sites; each site has its own copy of the database.

2.3.2 Cons

– Each cluster has its own database, any updates to the catalogs must be made to all
the databases.

– Within a server cluster, poor server node selection may lead to some nodes being
saturated while other nodes have surplus capacity.

2.3.3 How to Overcome

– An appropriate selection algorithm should be used for selecting the best server
node.

– Updation of database should be handled carefully

9

Chapter 3

Requirement Analysis

3.1 Platform Requirement :

3.1.1 Supportive Operating Systems :

The supported Operating Systems for client include:

– Linux Operating System (Ubuntu Server os 14.04 / 14.10 Utopic Unicorn) our.

Linux is the operating systems that will support comparative website. Since Linux is
an open source operating system, The project we implemented is developed on Linux
platform. The comparative website is tested on the same Linux OS.

Ubuntu 14.10 is used as server operating system. Apache 2.4 is used as Web server and
for database server Mysql server is used.

3.2 Software Requirement :

The Software Requirements in this project include:

– Web Stress Tool

– Internet Explorer, Mozila Fire Fox, Google Chrome, etc.

For testing the website as well as implemented architecture Web Stress Tool is used. This
tool provides a Ramp test on server by taking input as no of users and the complete url of
the website including login sessions.

10

Chapter 3. Requirement Analysis

3.2.1 Back End Software Requirement

– VM ware Virtual Machine.

– Html.

– Css.

– Php.

– Mysql.

– Java Script.

Web Server Db server is the backbone of the entire project. Main purpose is to design and
implement proposed architecture, VM ware is used to virtually distribute the hardware of
system into different machine, by distributing the machine we gain throughput over the
initial system.

Html, Css, Php is used to create the website for testing purpose of the architecture imple-
mented. An E-Commerce website is built named Jewellery store. This website consists
of all the necessary modules that basically exists on an e-commerce site.

In order to implement the same architecture an Administrator Gui is built using php lan-
guage.

3.3 Hardware Requirement :

3.3.1 Hardware Required For Project Development:

– 2.5 GB Ram.

– 250 GB Hard Disk Minimum.

– Quad Core CPU.

11

Chapter 4

Project Design

4.1 Design Approach

Design is the first step in the development phase for any techniques and principles for
the purpose of defining a device, a process or system in sufficient detail to permit its
physical realization. Once the software requirements have been analyzed and specified
the software design involves three technical activities design, coding, implementation
and testing that are required to build and verify the software. The design activities are
of main importance in this phase, because in this activity, decisions ultimately affecting
the success of the software implementation and its ease of maintenance are made. These
decisions have the final bearing upon reliability and maintainability of the system. Design
is the only way to accurately translate the customer requirements into finished software or
a system. Design is the place where quality is fostered in development. Software design
is a process through which requirements are translated into a representation of software.
Software design is conducted in two steps. Preliminary design is concerned with the
transformation of requirements into data.

4.2 Software Architectural Designs

Our system follows the three tier architecture . First tier consist of GUI, Linguistic com-
ponent and the Database.

1. User: A user sends a http request to access a particular website. The request is send to
the website through the internet.

2. Internet: The internet receives the incoming user request and based on the url the
user has provided, the internet forwards the request to that particular website.

12

Chapter 4. Project Design

3. Load Balancer: The load balancer residing at the website,to ensure load balancing
forwards the user request to one of the available servers. Load balancer aims to optimize
resource use, maximize throughput, minimize response time, and avoid overload of any
single resource.

4.Servers: The servers at the website to which the request is forwarded, answers the
arriving user requests.

Figure 4.1: Software architecture Design

13

4.2. Software Architectural Designs

4.2.1 Front End Designs

Register/Login: Initially when the user accesses the webapp he gets a login/register page.

Figure 4.2: Front End Design

Dashboard: The admin logins to the GUI and is directed to the dashboard, which dis-
plays the information of the CPU usage, Memory usage, Data usage and the information
of the system the admin is using based on the IP address the admin has provided.

balancer.png

Figure 4.3: Front End Design

14

Chapter 4. Project Design

Local Balancer: This functionality provided helps the admin to forward the incoming
request to more than one machine and to which port of the machine acccording to his
desire. But this features works only for local machine.

Figure 4.4: Front End Design

Balancer Manager: The manager provides the information about the working nodes in
tabular form. This includes information about the load on a specific node, the number of
requests on a node, the node elected, the data sent and received.

15

4.2. Software Architectural Designs

4.2.2 Component Diagram

Figure 4.5: Component Diagram of Scalability Design

16

Chapter 4. Project Design

4.2.3 Deployment Diagram

Figure 4.6: Deployment Diagram of Scalability Design

17

4.3. Database Design

4.3 Database Design

4.3.1 E-R Diagram

drawing (1).jpg

Figure 4.7: E-R Diagram of Scalability Design

18

Chapter 5

Implementation Details

5.1 Assumptions And Dependencies

5.1.1 Assumptions

The following Assumption was taken into consideration:

– The project is about web scalability, so main assumption is all the users will be
served by their requests without increase in the response time, also there will be no
error rate for any of the user once the system is scaled.

– There should not be any occurrence of bottleneck in Database with or without scal-
ing the system, all queries should be processed for any no of users requesting for
the db request.

5.1.2 Dependencies

The dependencies are as follows:

– For Web Server Apache 2.4 web server is used, this server is main backbone of the
whole system, also for database MySQL server is used, all the systems scaled use
this database server in order to process their db queries.

– VM ware virtual machine is used to divide the whole system into different ma-
chines, so the system is dependent on virtual machine software.

19

5.2. Implementation Methodologies

5.2 Implementation Methodologies

Different modules of the project are, Virtualization of the machine, installation of Server
Operating System, installation of servers (Web server Database Server), installation of
load balancer, Caching ,Creation of an E-Commerce website for testing of project, In-
stalling and using web stress tool for testing of scaled and un scaled servers, creating an
admin interface in order to make server configurations ease.

5.2.1 Modular Description of Project

Virtualization: In this module a single machine which was being used as Primary server
is divided using VM ware virtual machine into four different machines for efficient work
and coordination between divided machines.

Purpose for division is, a single machine has (in this case) has more processing power for
different tasks, but when it comes about execution of project half of the processing power
is being wasted i.e not used.

To use that remaining processing power,virtualization is used.

Installation of server Operating system:The operating system used for throughout project
is Ubuntu 14.10 (Utopic Unicorn).

This is a command line interface based Server operating system. Also it is an open source
operating system

Servers:For hosting and scaling the primary web server used is Apache 2.4 web server,
and for database server MySQL server is used.

Load Balancer:An extension of apache web server named mod proxy is used to set the
load balancer.

This load balancer balances the incoming request to the inner nodes for processing and
returns the desired output to the user.

Caching:Caching on web server is used to reduce the server side operations, when a
request arose, first it is being checked in the cache server, if caching is enabled, if found
the cache server serves the request without any processing loads on actual web server.
The Cache server used is Squid server.

E-Commerce website:After implementation of the proposed architecture, to test all the
servers capacity, an E-Commerce based Jewelry store website is being created. This
website is full working website to buy any type of jewelry. This website is stored on the
web servers and it is primary input to the test bed.

20

Chapter 5. Implementation Details

Web Stress tool:This is open source tool to test the capacity of the servers. This tool
generates virtual no of users as input provided and shoots queries or request from all the
created users, as an input it takes the url of the website which is being stored on scaled
server.

In ouput it returns multiple graphs of total testing process, this includes main graph that is
response time to no of users graph and error rate to no of users graph, through this graph
we can understand the capacity of server.

Admin Interface:In order to make all the admin side configurations ease, an Admin
dashboard Php based GUI is created. In this GUI you can access as well as configure
your systems for load balancing, Caching, Setting a website to a particular port and many
more.

5.3 Detailed Analysis and Description of Project

5.3.1 Activity Diagram

diagram(1).png

Figure 5.1: Activity Diagram

21

5.3. Detailed Analysis and Description of Project

This work is been carried out in four stages:

Step1: The Admin registers himself and logs in to the interface.

Step2: The admin enters the IP address of the system he has logged in or he changes the
previously entered IP if he logged in from a new system.

Step3: Admin configures the local or remote machines to map the request on available
system.

Step4: a) Remote- To configure the requests on remote machine, he enters the remote
machines IP, Username and Password and also the no of machines he desires to use.
b) Local- This process is same as remote process except that it does not asks for Username
and Password as the admin is configuring local machine.

Registration of Administrator: When admin has a particular hosting server, admin can
use the designed interface in order to set all the configurations for scaling as well as port
settings of the website, admin is registered to use the interface.

Admin Dashboard:On this web page descriptions of server is displayed i.e what kind of
operating system is used, what web server is being used, total configuration of the admin
machine and network traffic.

Balancer:In this page a short description is displayed of what a balancer does and what
kind of balancer is used and the configurations inputs is noted that how to provide input.
Ip address of number of backend servers is taken as input as well as Ip address of the
balancer server is taken, on just a click, all the configuration is executed and the admin
server is now configured for scaling purpose.

Caching: If admin wants to enter some of websites or web pages into the cache memory
of the server, here admin can configure for such setting. Input to be taken is Ip address of
the server machine, notes will provide what and how to provide the inputs. And memory
to be allocated for cache is asked on this page. After clicking on config button all the
desired setting is executed on server side and caching is implemented for that server.

Set to Port:If the admin wants a particular website to be hosted on his server but on
different port number, on this page admin can do such settings, inputs to be provided is ip
address of the server, port number on which the site is being to set and the website files.

Admin Shell: An administrator shell is provided to the admin which is php based imple-
mented.

Balancer Manager: When admin configures his system to load balancer, here admin can
manage the balancer configuration, i.e increase or decrease the no of balancing nodes/machines
and can choose the strategy on how the balancer should balance the load.

22

Chapter 5. Implementation Details

5.4 Usecase Report

Figure 5.2: ER Diagram

23

5.4. Usecase Report

5.4.1 Usecase Report

Title: Web Scalability admin dashboard
Description: Admin dashboard enables the user to configure the system

into an scalable system, also it provides additional informa-
tion of the server machine. Using this dashboard admin can
make its system scalable by enabling load balancing and
caching and setting a website to a port.

Primary
Actor:

Administrator

Preconditions: Well knowledge of the server machine
Post condi-
tions:

By using simple Gui features, admin can make system scal-
able.

Frequency
of Use:

Admin can use at any time.

System Re-
quirement:

Admin server and web server.

Table 5.1: Usecase Report

5.4.2 Class Diagram Report

Title: Web scalability admin dashboard
Description: Admin dashboard enables the user to configure the system

into an scalable system, also it provides additional informa-
tion of the server machine. Using this dashboard admin can
make its system scalable by enabling load balancing and
caching and setting a website to a port.

Primary
Actor:

Administrator. OR User

Preconditions: Well knowledge of the server machine
Post condi-
tions:

By using simple Gui features, admin can make system scal-
able.

GUI Inter-
face:

First user will provide IP address and ports in back ground
shell script will be executed and server will be started.

Database: Databse is used for retrieving the result from. It is the main
component.

Table 5.2: Class Diagram Report

24

Chapter 6

Results and Discussion

6.1 Test cases and Result

When the website is tested for load using the webserver stress tool, the results generated
in both cases i.e with load balancing and without load balancing are generated by the
stress tool in the form of graphs.

6.1.1 Unit Testing

Unit testing is a software testing method by which invidual units of source code, sets
of one or more computer program modules together with associated control data, usage
procedures, and operating procedures, are tested to determine whether they are fit for
use. The goal of unit testing is to isolate each part of the program and show that the
invidual parts are correct. For the basic unit testing we configured a virtual machine with
3 GB RAM and Quad core CPU and installed the server operating system Ubuntu server
14.10 Utopic Unicorn, web server Apache and database server MySQL. After completely
configuration, we created an E-Commerce based Jewellry website with database, Then
we placed that website in this configured server. When we tested the website using Web
Stress Tool for 4000 users, the server was unable to handle the load for such bulk. But an
important point to be noted in this case is that even at full load it only used 945 MB RAM
(approximately) out of 3 GB provided. Ideally system without load was occupying 450
MB of RAM i.e the system was only occupying 500 MB of ram and rest of the processing
was getting wasted which is displayed in fig (6.1).

25

6.1. Test cases and Result

(39).png

Figure 6.1: Click Time hits/s ,Users/s.

6.1.2 Functional Testing

Functions are tested by feeding them input and examining the output, and internal pro-
gram structure is rarely considered in this testing.

Ramp tests Ramp Tests are variations of Stress Tests in which the number of users is
increased over the life of the test from a single user to hundreds of users. By reviewing
the graphs of click times and errors, a Ramp Tests can help you determine what maximum
load a server can handle while providing optimal access to web resources.

As discussed in unit testing the system RAM was not utilized fairly, we divided the ma-
chine that we created with 3 GB RAM into five virtual machines each with 512 MB RAM.
The management of these machines required balancing the load. So one of the machines
was choosed as a load balancer, the three of them as working nodes and one as a database
server. These machines were tested for stress without using load balancing.

26

Chapter 6. Results and Discussion

Result without LoadBalancer:

Without load balancing, for 4000 users the response time was 16000 ms and also the error
rate shot to 100 percent at around 400 users.

Figure 6.2: Click Times and Errors.

Figure 6.3: Click Time,Hits/s,Users/s.

The above graph shows the result of hits per second and clicks per second for 4000 users.

27

6.1. Test cases and Result

Reslt with Loadbalancer.

Figure 6.4: Click Time Error.

With load balancing the response time drop down to 13000 ms for 4000 users and also
the error rate was comparatively very low.

Figure 6.5: Click Time hits/s ,Users/s.

The results achieved using load balancing are more reliable than those obtained without
load balancing technique. Load balancing ensures less reponse time and error rate and
more utilization of available resources.

28

Chapter 7

Project Time Line

7.1 Project Time Line Matrix

Figure 7.1: Time Line Matrix

29

7.2. Project Time Line Chart

7.2 Project Time Line Chart

Figure 7.2: Time Line Chart

Figure 7.3: Time Line Chart

30

Chapter 8

Task Distribution

8.1 Distribution of Workload

8.1.1 Scheduled Working Activities

Activity Time
Period

Comment

Requirement Gathering 13 Days Requirement gathering has took
placed through searching on in-
ternet and taking the ideas, shar-
ing the views among group
members.

Planning 07 Days Planning was done by reviewing
of literature of IEEE papers and
by taking the walkthrough.

Design 07 Days Designing was accomplished by
creating UML diagram, charts.

Implementation 70 days Implementation has done First
creating the backend and then
front end module by module.

Testing 15 days Testing has done by perfoming
unit testing, alpha & Beta Test-
ing, integrated testing and sys-
tem testing.

Deployment 07 days Deployment has done by in-
stalling project on the server.

Table 8.1: Scheduled Working Activities

31

8.1. Distribution of Workload

8.1.2 Members actvities or task

Member Activity Time
Period

Start
Date

End
Date

Comment

M1, M2, M3, M4 Requirement
Gathering

07 Days 14/12/15 22/12/15 M1 and M2 has perfomed
the seaching for project re-
quirement on the internet
by reviewing the related
literature and by anlysing
the related prject which
is already available in the
market. Regularly inform
to the other member of
team.

M1, M2, M3, M4 Analysing of
the require-
ment

03 Days 23/12/16 28/12/16 M1, M2, M3, M4 done
the requirement analysing
of project by sharing the
ideas, and by discussing
on related information
which is gather by the
M1, And M2. M3 and
M4 has created the list of
requirement after every
meeting

M1, M2, M3, M4 Finalysing the
requirement

03 Day 28/12/15 30/12/15 Whole team finalize the re-
quirement. M1 and M4
has created a list of finalise
requirement.

M1, M2, M3, M4 Planning 07 Days 31/12/15 20/01/16 Planning has done by
walkthrough and by
analysing the available
product. M2 and M3
creats a list of funtion
which will be implement
in the project. Each and
every module were discuss
in every group meeting
and M1 and M2 creates a
blue print for project .

32

Chapter 8. Task Distribution

M3, M2 Front End design 07 Days 11/01/16 19/01/16 M3 and M2 creates the
front end of the sys-
tem and data flow dia-
grams and informed to
the whole team regu-
larly.

M1, M4 Back End design 07 Days 11/01/16 19/01/16 M1 and M4 creates
back end of the sys-
tem and data flow dia-
grams and informed to
the whole team regu-
larly.

M2,M3 Installation
of Server OS
Ubuntu14.10

05 Days 20/01/16 26/01/16 M2 and M3 Installed
Server OS Ubuntu14.10
discuss on it with other
team membar

M4 Installation of
Server (DB and
Web)

02 Days 26/01/16 27/01/16 M4 installed Server
(DB and Web) and
discuss on it with other
team member

M1 ,M4 Installation of
Cache Server

07 Days 27/01/16 04/02/16 M4 and M1 installation
of Cache Server. M4
and M1. Discuss the
installation to the other
member of team.

33

8.1. Distribution of Workload

M2, M4 Implementation
of Load Balancer

12 Days 03/02/16 18/02/16 M2 and M4 done the
load balancer and dis-
cuss the method with
other team member reg-
ularly.

M3, M4 Implementation
of setting of port

02 Days 18/02/16 19/03/16 M3 and M4 imple-
mented the setting of
ports.

M1, M3 Implementation
of Web-
Site(Jewellery)

20 Days 02/03/16 29/03/16 M1 and M3 im-
plemeted the website
(Jewellery). And reg-
ularly giving update to
other members.

M2 ,M3 Implemantation
of testing soft-
ware(Webstress)

07 Days 29/03/16 06/04/16 M2 and M3 imple-
mented the testing
software(Webstress)
and explain the work-
ing of it to other
members.

M1, M2,M3, M4 Implementation
of GUI for
Project

05 Days 07/04/16 13/04/16 M1, M2, M3 and M4
implemented the GUI
for project.

M2 ,M3 Testing and Gen-
erating report

03 Days 14/04/16 18/04/16 M2 and M3 have tested
and generated the re-
port.

Table 8.2: Member Activities and Task

34

Chapter 9

Conclusion and Future Scope

9.1 Conclusion

Scalability is an important constraint in this century as several businesses are imple-
mented on web in order to spread it throughout the globe. We have presented a new
approach and several techniques for scaling web server. The new technique differs from
existing technique in that with the use of minimum caches and improving load balancing
technique we can achieve high request handling capacity of a server.

Cache operations are costly,so when the load on the server is less than its capacity this
operations should be preserved, We divided the throughout architecture into two layers,
this provides to reduce costly operations.

This solution we purposed in paper will be optimal as it uses a bit of hardware that is cache
and software in load balancer will be used in optimal and efficient web server scaling.

9.2 Future Scope

1. In Our project we have virtualized our server by own but in future we can add
monitoring machanism in which it will look toward traffic or load and
automatically create number of virtual server by its own.

2. In future we can add one mechanism that continously check all the server
functioning.In this it mainly check whether the server is functioning properly or
not. If due to some reson any one of server crashes down we it will automatically
discard it and the functionality will not be effected.

35

References

[1] E. Kirda, M. Jazayeri, C. Kerer, and M. Schranz, Experiences in Engineering Flexible
Web Services.IEEE MultiMedia, vol. 8, no. 1, pp. 58-65, Jan. 2001.

[2] Sameena Naaz Load Balancing Algorithms for Peer to Peer and Client Server Dis-
tributed Environments,IEEE MultiMedia, June 2012

[3] Gregor v. Bochmann Scalability of Web-Based Electronic Commerce Systems,IEEE
MultiMedia, July 2003.

[4] Daniel A. MenascÃ c©website through caching George Mason University menasce@cs.gmu.ed
June 2003.

[5] Thomas Fankhauser,Christos Grecos, Xinheng Wang, Qi Wang, Ansgar GerlicherWeb
Scaling Frameworks for Web Services in the Cloud IEEE MultiMedia

[6] Xianjun Geng,Ram D Gopal, R. Ramesh, Andrew B. WhinstonScaling Web Services
with Capacity Provision Networks IEEE MultiMedia ,July 2015

[7] Ken BirmanCan Web Server Scale Up? IEEE MultiMedia ,July 2015

[8] Damith C. RajapakseA Fresh Graduates Guide to Software Development Tool and
Technologies University of Singapore,April 2011

36

Own Publications

Siddique Asma Abdul Wahab Zainbunnisa ,Patil Amit Suresh Archana,Mirsinge Ibad
Ibrahim Saba ,Tulve Shabab Kasim Shagufta Web Scalability :Using Server Vertiuliza-
tion ,Load Balancing And Caching IJSRD International Journal for Scientific Research
Development.

37

IJSRD - International Journal for Scientific Research & Development| Vol. 3, Issue 09, 2015 | ISSN (online): 2321-0613

All rights reserved by www.ijsrd.com 1061

Web Scalability: Using Server Virtualization, Caching and Load

Balancing
Siddique Asma

1
 Patil Amit

2
 Mirsinge Ibad

3
Tulve Shabab

4
 Prof. P.S Lokhande

5

1,2,3,4
Student

 5
Assistant Professor

1,2,3,4,5
Department of Computer Engineering

1,2,3,4,5
AIKTC, University of Mumbai, Mumbai, India

Abstract— Web applications are the main source of

information exchange of businesses over the globe. The

main problem over the globe about the web applications is

the service of the particular server. As a server has its own

capacity to handle some amount of particular clients, there is

always a possibility the number of Clients may get

increased, at this time most of servers are unable to respond.

This paper gives a purposed solution for Servers to handle

more clients even when its capacity exceeds without scaling

it horizontally that is (without increasing hardware).

Management of clients requests on a web Server is managed

In order to increase the capacity on a server and hence it

gets capable to handle more clients. Architecture for scaling

web servers is uses application level scaling which makes it

flexible to be applied on any other servers.

Key words: Scaling, Web Server Scaling, Caching, Load

Balancer, Application Level Scaling, Scalability

I. INTRODUCTION

Now-a-days E-commerce sites are increasing rapidly.

Almost all selling and buying is done on E-commerce sites.

Since these type of business is growing fast the system

which is responsible for this type of business should also be

improved so as to be compatible with increasing number of

users. It is important to improve the system so as to

maintain its performance. If the performance of this type of

system is lowered then it will lead to the losing a customers.

Losing customers means loss in business. In E-Commerce

one hour of site failure results leads to loss of millions of

dollars. Web applications typically undergo maintenance at

a faster rate than other systems; this maintenance often

consists of small incremental changes [1]

This influenced us to introduce scalability in these

systems so as to improve the system and making system

relevant to user. Scalability is essential term to achieve the

best performance from the system. Scalability can be

defined as “The potential or capability of a system to handle

more loads without increasing the response time of request”.

In Web Scalability the capacity of Servers to handle a

particular number of users request is increased, through this

scalability is achieved. A Web application can be

differentiated from a Web site based on the “ability of a user

to affect the state of the business logic on the server”[2]

II. LITERATURE REVIEW

For Web Scalability we have observed and studied

following.

A. Scaling using Load Balancer:

When multiple web servers are present in a server group, the

HTTP traffic needs to be evenly distributed among the

servers. In the process these servers must appear as one web

server to the web client, for example an internet browser.

The load balancing mechanism used for spreading HTTP

requests is known as IP spraying. The equipment use for IP

spraying is also called the load dispatcher or network

dispatcher or simply the load balancer. In this case the

sprayer intercepts each HTTP request, and redirects them to

a server in the server cluster.[5]

Depending on the type of the sprayer involved, the

architecture can provide capability, load balancing and fail

over requirements. Load balancing of servers by an IP

sprayer can be implemented in different ways. These

methods of load balancing can be set up in the load balancer

based on available load balancing types. There are various

algorithms used to distribute the load among the available

servers. Algorithms: Random Allocation, Round Robin,

Weighted Round robin.

B. Scaling using Caching

A powerful concept for reducing the delay caused in

processing request and saving bandwidth is caching web

resources. Here the resources refer to web pages. We find

caches at Web browsers, organization proxy server caches,

Internet service providers, content delivery networks

(CDNs), and Web servers. A cache at the server side is

mainly used to reduce the time required for processing a

request. Server side caching is the act of caching data on the

server. Data can be cached anywhere and at any point on the

server that makes sense. It is common to cache commonly

used data from the database to prevent hitting the database

every time the data is required. We cache the results from

competition scores since the operation is expensive in terms

of both processor and database usage. It is common to cache

pages or page fragments so that they don’t need to be

generated for every visitor.

1) Cache Hit Ratio:

A cache-hit ratio is the number of times the database found

something in cache divided by the number of times it looked

for some object in the cache. The higher the ratio, the more

effective the cache is at improving performance. Taking into

account the cache hit ratios; the frequency of reference f to

Web documents is inversely proportional to the rank r,

which is measured in terms of the document’s popularity.

The most popular document has r = 1, the second most

popular has r = 2, and so on.

This relationship, called Zipf’s law, states that: f =

k/r . . . where k is a constant.

Types of Caching Used:

 Object caches: are used to store objects for the

application to reuse. These objects are either come from

a database directly or are generated through data

computation.

 Memcached: It is a high-performance, distributed

memory object caching system, generic in nature, but

Web Scalability: Using Server Virtualization, Caching and Load Balancing

 (IJSRD/Vol. 3/Issue 09/2015/261)

 All rights reserved by www.ijsrd.com 1062

intended for use in speeding up dynamic web

applications by alleviating database load.

 Reverse Proxy Cache: Reverse proxy caches is a

strategy for web application caching. While object

cache are usually used to cache database objects,

reverse proxy cache are used to cache the result of web

server e.g. web, DNS and other network lookups.

Reverse proxy caches reduce loads on web servers and

improve response time to user requests, facilitating

scalability.

C. Scaling Database:

The database is the most common bottleneck in web

applications, since a lot of reads and writes occur at the

database level, and hence the primary focus in this book

section is on scaling them. A scalable database is one that

performs well under increasing traffic and dataset.

1) Methods for Database Scaling

a) Replication

 Database replication using the master-slave model

 Multi-master Replication Model

 Replication Delay and Consistency

b) Partitioning

 Round Robin Partitioning

 Hash Partitioning

 Range Partitioning

 Vertical Partitioning

 Horizontal Partitioning

2) Short falls in Existing System:

 Multiple Web servers are assigned using horizontal

scaling technique and appropriate load balancing

technique is applied i.e DNS load balancer.

 Cache operations are costly, hence existing system

larger amount of cache is assigned for the repeated

request of data.

3) How to Overcome:

 In Proposed method we use server virtualization to

create virtual server of single server and the

applying load balancing technique in order to scale.

 Using Zipf’s Law and accurate calculations of the

demanded page, It will be stored in the cache

III. PROBLEM STATEMENT

We are Scaling web servers on application level not by

using horizontal or vertical scaling techniques.

IV. OBJECTIVE AND SCOPE

A. Objective:

The objective of the proposed system is to scale a web

server on application level that is to use minimum hardware

and scale the requests on server side. The proposed system

would have the capability to handle clients request more

than its original limit. Since available solutions in market

are to increase the Hardware components another solution is

to increasing the number of server machines.

B. Project Scope:

 Server will be capable of handling more concurrent

user then conventional server.

 Caching gives Boost to handle more concurrent user.

 Web security at client side of cookies.

 Simultaneous updating of cache.

 More space required for cache operation.

V. PROPOSED SYSTEM ARCHITECTURE

A. Basic System Architecture:

A typical Web-based electronic commerce system has a

three-tier architecture: the Web server, electronic commerce

application server, and database system[3]. Basic system

follows three tier Architecture. Server is divided according

to Web Server, Application Server and Database Server.

The Web server is a process that handles requests from users

and returns the requested web pages. The application server

contains the business logic and accesses the database for

information.

Basically the work of the Architecture is, A user

asks any request to a server, in Server the Web server

Process the request and forwards it to the application server.

Application Server has access to database of the Server,

through accessing the data it returns the information

requested by the client

Fig. 1: Basic 3-tier Architecture

B. Proposed Architecture:

The System is divided into multiple components in which

uses the three tier architecture along with some

modifications.

1) Load Balancer:

On server side this is the first component to receive the users

request. At a particular second it receives thousands of

clients requests. The main purpose of this load balancer is to

divide the requests among different web servers. Load

balancer uses the technique such as DNS Load balancing. In

this proposed system Architecture the load balancer will use

this technique and the algorithm used will be Round Robin

or Weighted Round Robin Along with Load balancer there

is a counter which counts the number of concurrent users

according to their respective ip address. Calculating these

algorithms load balancer will forward the request to

application server.

2) Web Server:

Main work of web server is process HTTP or any other

protocol request, The primary function of a web server is to

store, process and deliver web pages to clients. The

communication between client and server takes place using

the Hypertext Transfer Protocol (HTTP)[wiki]. In this

Architecture the web server requests for web pages to the

application server which are stored in database. If the

request is found on the fragment it will retrieve from that

fragment.

3) Application Server:

An application server, according to our definition, an

application server exposes business logic to client

applications through various protocols, possibly including

HTTP [javaworld]. Here an application server will receive

the request from the web server, It has all access to the

Web Scalability: Using Server Virtualization, Caching and Load Balancing

 (IJSRD/Vol. 3/Issue 09/2015/261)

 All rights reserved by www.ijsrd.com 1063

database of the server. Application server will process the

db request and will send reply to the web server.

4) Payment Gateway:

This is a third party gate way provided on internet for safer

mode of payment.

5) Database Server:

A database server is a computer program that provides

database services to other computer programs or computers,

as defined by the client–server model[wiki]

Fig. 2: Proposed System Architecture

6) Caches:

 MDP-Most Demanded Pages: In this cache recent

most demanded page will be stored. Calculations

will be done before assigning the caches to gain

maximum hit ratio.

 HP- Home Page: This Home page cache will be

created if the servers capacity and the capacity of

MDP cache is exceeded. The user will be redirected

to home page in such scenarios.

 Cookies: When the users request is redirected from

the MDP cache, some information will be sent to

users along with the page in form of cookies. This

technique will allow reducing the calculation for next

page on the server.

 Dead Cache: When user want to enter into the

payment mode to payment gateway user goes into

inactive state or dead state. In this protocol the server

forwards the user session to the dead cache along

with the counter. Advantage of this cache, the counter

will count the users gone for payment and the server

will take new users requests at mean time.

VI. TECHNICAL DETAILS

A. Methodology:

According to proposed architecture the system is divided

into different components.

1) Scaling Method Flow:

 Distribute the server into multiple virtual servers to

achieve clustering.

 Uses DNS load balancer to distribute the load on

virtual servers.

 Appropriate Caching technique is used to create

caches to reduce load.

 Data base is distributed into replica or fragments to

avoid bottle neck and to reduce response time.

2) Description of Methodology

a) Load Balancing Algorithms used to handle requests

on Servers.

DNS based Load Balancing Technique: DNS-based load

balancing represents one of the early server load balancing

approaches. The Internet’s domain name system (DNS)

associates IP addresses with a host name. If you type a host

name (as part of the URL) into your browser, the browser

requests that the DNS server resolve the host name to an IP

address. The DNS-based approach is based on the fact that

DNS allows multiple IP addresses (real servers) to be

assigned to one host name, as shown in the DNS lookup

example in Listing. DNS is an efficient solution for global

server load balancing, where load must be distributed

between data centers at different locations. Often the DNS-

based global server load balancing is combined with other

server load balancing solutions to distribute the load within

a dedicated data center. Algorithms: Randomized

Distribution Round Robin Weighted Round Robin

3) A Local Server will be distributed into Virtual Servers.

a) Technique:

 Set your hostnames or setup OS to recognize your

local websites.

 Create a folder for the website.

 Setup Apache to serve multiple sites.

4) Creating Caches of Frequent used Data.

As stated in the book A Fresh Graduate’s Guide to Software

Development Tools and Technologies caching of web paged

is achieved by mathematical calculations by zipf’s principle.

a) Caching techniques:

 Object Cache.

 Memcached.

 Reverse Proxy cache

 Content Delivery Network.

5) Data fragmentation method is applied.

When particular piece of data is frequently accessed by the

users at a particular site, it is more feasible to fragment that

piece of information and store that copy of fragment at that

site rather than storing the whole information including

which is used very often. Thus the information can be

retrieved more easily from that site, also the time required

for retrieval decreases as there is less data stored to search

for. This decreases the size of data store data each site and

also speeds up the accessibility. Also it reduces the bottle

neck attack.

a) Techniques:

 Replication

 Database replication using the master slave

method.

 Multi-master Replication model.

 Replication delay and consistency.

 Partitioning

 Vertical

 Horizontal

B. Project Requirements:

1) Software Requirements

 Technology : PHP

 Web Technologies : Html, JavaScript, CSS

 Database : Mysql

 Web Server : APACHE

Web Scalability: Using Server Virtualization, Caching and Load Balancing

 (IJSRD/Vol. 3/Issue 09/2015/261)

 All rights reserved by www.ijsrd.com 1064

2) Hardware Requirements

 Processor : Intel

 RAM : 1GB

VII. MARKET POTENTIAL

A. Market Potential of Project:

There is no proper solution in current market to overcome

the scalability issue.

Other solutions are to scale vertical or horizontal

which are time consuming, costly, and high maintenance

operations

Another solution is cloud computing in which web

servers are hired on timely basis.

Solution purposed in this paper is scaling web

servers by managing the requests among the server in order

to reduce the response time and thereby increasing the

capacity of then server

B. Competitive Advantage of Project-

1) Previously web Scaling was to improve the

hardware capacity or increasing the number of

machines in web server.

2) This type of scaling is often costly and increases

the maintenance when it is implemented.

3) This project provides software scaling in order to

improve scalability

4) Software web Server scaling will provide reduce

maintenance cost, reduce Hardware cost, easy

maintainability.

VIII. CONCLUSION AND FUTURE SCOPE

A. Conclusion:

Scalability is an important constraint in this century as

several businesses are implemented on web in order to

spread it throughout the globe. We have presented a new

approach and several techniques for scaling web server. The

new technique differs from existing technique in that with

the use of minimum caches and improving load balancing

technique we can achieve high request handling capacity of

a server. Cache operations are costly, so when the load on

the server is less than its capacity this operations should be

preserved, we divided the throughout architecture into two

layers, this provides to reduce costly operations. This

solution we purposed in paper will be optimal as it uses a bit

of hardware that is cache and software in load balancer will

be used in optimal and efficient web server scaling.

IX. FUTURE SCOPE

 There is no proper solution in current market to

overcome the scalability issue.

 Other solutions are to scale vertical or horizontal which

are time consuming, costly, and high maintenance

operations

 Another solution is cloud computing in which web

servers are hired on timely basis.

 Solution purposed in this paper is scaling web servers

by managing the requests among the server in order to

reduce the response time and thereby increasing the

capacity of then server

ACKNOWLEDGEMENT

We would like to thanks our guide Prof. P.S. Lokhande for

giving his valuable guidance who also provided expertise

that greatly assisted the research.

REFERENCES

[1] E. Kirda, M. Jazayeri, C. Kerer, and M. Schranz,

“Experiences in Engineering Flexible Web Services,”

IEEE MultiMedia, vol. 8, no. 1, pp. 58-65, Jan. 2001.

[2] J. Conallen, Building Web Applications with UML.

Addison-Wesley, 2000.

[3] Gregor v. Bochmann,”Scalability of Web-Based

Electronic Commerce Systems” July 2003.

[4] Daniel A. Menascé, “Scaling website through caching”,

George Mason University menasce@cs.gmu.ed June

2003

[5] Sameena Naaz “Load Balancing Algorithms for Peer to

Peer and Client Server Distributed Environments.” June

2012.

[6] [wiki] www.wikipedia.org

[7] [java world]www.javaworld.com

Chapter 10

Appendix I

10.1 Webserver Stress Tool

Most websites and web applications run smoothly and correctly as long as only one user
(e.g. the original developer) or just a few users are visiting at a given time. But what
happens if thousands of users access the website or web application at the same time?

Using Webserver Stress Tool you can simulate various load patterns for your webserver
which will help you to find problems in your webserver set up. With steadily increasing
loads (so called ramp tests) you are able to find out how much load you server can handle
before serious problems arise.

10.1.1 Features of Web Stress Tool

– Webserver Stress Tool simulates anywhere from a few users to several hundred
users accessing a website via HTTP/HTTPS at the same time.

– Based on a set of URLs or using a VBScript the software simulates independent
users requesting webpages from that URL including images, frames etc.

– Each user is simulated by a separate thread with its own session information (e.g.
cookies are stored individually for each user). URLs can be parameterized for each
user and the sequence of URLs can be varied.

42

Chapter 10. Appendix I

10.1.2 Webserver Stress Tool can be used for various tests

– Performance Tests are used to test each part of the webserver orthe web application
to discover what parts, if any, are slow and how you can make them faster. Most
often this is done by testing various implementations of single web pages/scripts to
determine a configuration of code that is the fastest.

– Load Tests are performed by testing the website using the best estimate of the traffic
your website must support. Consider this likea real world test of the website.

– Stress Tests are simulated âœbrute forceâ attacks that apply excessive load on your
webserver. Real world situations like this can be created by a massive spike in users
caused, innocently enough, by a new advertising campaign.

– Ramp Tests are used to determine the maximum threshold of users that can be
served before error messages are produced.

10.1.3 Test result can be viewed as

Webserver webstress tool also provides serveral /ways to view results.

– Several eas.y to use graphs

– Summer Log.

– Detailed Log.

– Machine readable request Log(CSV).

– Raw graph data(CSV).

43

ACKNOWLEDGMENT

I would like to take the opportunity to express my sincere thanks to my guide Prof. P.S. Lokhande,

Assistant Professor, Department of Computer Engineering, AIKTC, School of Engineering, Pan-

vel for his invaluable support and guidance throughout my project research work. Without his

kind guidance & support this was not possible.

I am grateful to him for his timely feedback which helped me track and schedule the process

effectively. His time, ideas and encouragement that he gave is help me to complete my project

efficiently.

I would also like to thank Dr. Abdul Razak Honnutagi, AIKTC, Panvel, for his encourage-

ment and for providing an outstanding academic environment, also for providing the adequate

facilities.

I am thankful to Prof. Tabrez Khan, HOD, Department of Computer Engineering, AIKTC,

School of Engineering, Panvel and all my B.E. teachers for providing advice and valuable guid-

ance.

I also extend my sincere thanks to all the faculty members and the non-teaching staff and friends

for their cooperation.

Last but not the least, I am thankful to all my family members whose constant support and en-

couragement in every aspect helped me to complete my project.

Patil Amit Suresh Archana (12CO53)

44

Chapter 10. Appendix I

Mirsinge Ibad Ibrahim Saba(12CO42)

Tulve Shabab Kasim Shagufta (12CO62.)

Siddique Asma Abdul Wahab Zaibunnisa (12CO14)
(Department of Computer Engineering)

University of Mumbai.

45

