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Abstract

Tittle: Web Scalability

Web Scalability is the phenomenon when the incoming user requests on a server increases such
that it exceeds the server capability to handle them and the system is able to somehow cope up
with the increasing load. Since all servers can serve limited users if limit exceeds the server
will either slow down or will crash. In today world all businesses are dependent on internet, as
business grows the number of users accessing the web also increases which eventually grows
the load on servers. Our project provides a mechanism for the businesses carried over internet
to handle the icreasing amount of workload. The system provides an easy and handy solution to
manage the user requests by mapping them on available server with the help of load balancing.
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Chapter 1

Introduction

1.1 Statement of Project

Web scalability is a technique which is used to scale the servers. There is a capacity of
every server if limit exceeds the user wont get the requested site hence it is required to
scale the server in such way that it will handle more number of users. Over last decade
shopping sites have grown and so the users and it is needed to have the scaled system and
hence we improved the system by scaling it by using load balancing and caching tech-
niques.There are too many shopping sites present and they do not have a scaled system
hence they cannot maintain the load on the servers.
The term Web scalability means without increasing the hardware of the servers and with-
out increasing the number of the server we must handle the more request without degrad-
ing the response time.The available solutions are vertical scaling and horizontal scaling,
vertical scaling is increasing number of servers and horizontal scaling is increasing the
hardware of the server.[8]
We have designed the architecture which neither uses more number of servers nor hard-
ware of server is improvised, we are using the load balancing and caching techniques
which will handle the load more than current architecture.Scaling actually deals with
limited resources you need to meet the peak requirements.we get errors many times say-
ing that webpage not found its because the server has reached its limit and it wont serve
further.
In our proposed system such errors will not happen since we have the load balancing
and caching technique which will distribute the load such that there will not be such
errors.Techniques used load balancing and caching.

1



1.2. Motivation

1.2 Motivation

Now a days shopping is done hugely on internet. With gaining popularity of online shop-
ping, the users accessing the ecommerce web application is also increasing. This growth
in the number of users affects the efficiency of a system. Sometimes it is possible that
server may not respond to each and every user because the incoming request may exceed
the servers capacity to handle them. Every server possesses a limit to serve the user re-
quests if this limit exceeds it cannot serve the requests, this may cause a great loss to a
business website. Users cannot wait for long time so the response time should be as low
as possible. If the response time is more then the user might terminate the purchase of
product from the shopping website. Even on social networking sites there are huge num-
ber of users requesting the same web page at a same time so the servers may not serve all
users it may either slow down or it wont serve each and every user. Hence it is neccessary
to build a system that is scalable enough to overcome this issue. This motivated us to built
a scalable server.

1.2.1 Advantage Over Current System

Current system has too may drawbacks such as high response time,serving limited users
etc. Our proposed system is able to handle more no. of request than a current system
and have less response time. Since in todays world where most of the buying and selling
is done through website it is neccessary to have a scaled system. The current system is
not scaled proporely our system is properly scaled and hence can handle more load than
current system and also have the minimum response time than current system.Current
system architecture has many drawbacks and hence we have the improvised system ar-
chitecture.Our architecture consist enhanced load balancing and caching technique which
is not present in current system.

2



Chapter 1. Introduction

1.2.2 Project Architecture

Figure 1.1: System Architecture

The System Architecture consists of three modules:

– Load Balancer.

– Web Server.

– Database Server.

3



1.3. Objective and Scope

Load Balancer: Computer clusters rely on load balancing to distribute workload across
network links, CPUs, web servers, etc. A server farm is a common application of load
balancing, where multiple servers seamlessly provide a single Internet service. In this
case the load balancer accepts requests from external clients and forwards them to one
of the available backend servers according to a scheduling algorithm (e.g. round robin,
random choice, on a reported load basis, etc.) .Load balancers can be implmented using
dedicated hardware or ad-hoc software.

Web Server: Main work of web server is process HTTP or any other protocol request.
The primary function of a web server is to store, process and deliver web pages to clients.
The communication between client and server takes place using the Hypertext Transfer
Protocol (HTTP)[wiki]. In this Architecture the web server requests for web pages to
the application server which are stored in database. The request to the web server is
forwarded bt the load balancer, since load balancer calculates algorithms according to ge-
ographical areas, web page will also demand the page from application server according
to the need.

Database Server:The database is of course stateful, after very definition and function
of a database is to store application state. In fact, the state (application data) stored in a
database must be a permanent record of actions performed by end users, otherwise the
organization the application servers, or the application itself cannot function.

1.3 Objective and Scope

1.3.1 Objective

The objective of the proposed system is to scale a web server on application level that
is to use minimum hardware and scale the requests on server side. The proposed system
would have the capability to handle clients request more than its original limit. The
main objective of our proposed system is that the server should serve more and more
request without degrading the response time with minimum use of hardware and making
the system scalable.The scalable system has the potential to serve the more number of
request than the conventional system.To utilize the available resources in such a wa that
the system is completely scaled and have advantages over a current system.

1.3.2 Scope

Proposed system is domain independent therefore can be used in any application. Where
there is need to store the data and retrieving of data is done by non technical person or
naive user, this system is useful.

4



Chapter 1. Introduction

– Server will be capable of handling more concurrent user then conventional
server :The system can be used for many purpose in School and College .There
is a need of storage of student,teacher,cleark data .The detail about student fees,
result, document etc this data is usefull to student, teacher as well as to the admin-
istration department . Thus this data need to be stored in data base and native user
find difficult to interact with the SQl software thus the system can be used in School
and Colleges.

– Caching gives Boost to handle more concurrent user: In Hospital the patient,
medicane are the important attribute there is the need that detail of this attribute
need to be maintained so that one can get the information as required per their need
this data are important for the user the day when the doctor are availabe the detail
of the medicane present in the hosptial ,the day when the operation is to bee done
are the important document for the user as well hosptial staff thus this data need to
be stored in to the database thus interaction with this data form database need SQl
command thus creating a system that can easily used to communicate with normal
user in normal language that is English so that help to communicate with the system
with ease.

– Web security at client side of cookies:The system can be used in Railway ,Air
reservation purpose the detail of the user who have booked thier ticket the day the
trail and flight will leave the place and the day it will reach the destation . The num-
ber of the customer which are in the wating list so on this detail can be maintained
using the system and normal user can easily check for the detail like wise the system
can bee used for below purpose.

5



Chapter 2

Literature Review

2.1 Scaling Web Sites Through Caching.

A powerful concept for reducing the delay caused in processing request and saving band-
width is caching web resources. Here the resources refer to web pages. We find caches
at Web browsers, organization proxy server caches, Internet service providers, content
delivery networks (CDNs), and Web servers. A cache at the server side is mainly used
to reduce the time required for processing a request[4]. Server side caching is the act of
caching data on the server. Data can be cached anywhere and at any point on the server
that makes sense. It is common to cache commonly used data from the database to prevent
hitting the database every time the data is required. We cache the results from competition
scores since the operation is expensive in terms of both processor and database usage. It
is common to cache pages or page fragments so that they don’t need to be generated for
every visitor.

A cache-hit ratio is the number of times the database found something in cache divided
by the number of times it looked for some object in the cache. The higher the ratio, the
more effective the cache is at improving performance[4]. Taking into account the cache
hit ratios, the frequency of reference f to Web documents is inversely proportional to
the rank r, which is measured in terms of the document popularity. The most popular
document has r = 1, the second most popular has r = 2, and so on. This relationship,
called Zipf law, states that:

f = k/r . . . where k is a constant.

With the advancing growth in technology solutions are available which helps solve the
problem in smarter way. Use of cache is one of the way to scale such web applications at
cheap cost. With Web site caching, Web content accelerates because documents likely to
be requested are maintained in the cache[4]. This approach requires all incoming requests
to pass through the cache first. Consequently, the cache server must have the capacity to
handle all incoming traffic plus the cache update requests caused by cache misses.[4]

6



Chapter 2. Literature Review

2.1.1 Pros

– Faster access to valid cache resources.

– Saving on costly use of bandwidth.

– Providing cached resources even when origin server is down.

2.1.2 Cons

– Its hard to maintain the cache data if changes are made in any of the data we are
supposed to change the content from each and every cache server.

– If most of the request will be served by cache server the webserver will not be
utilized at it fullest and it will be the wastage of money.

– Complex architecture and hence not implementable on every system.

– Too much of hardware is utilized.

2.1.3 How to Overcome

– Simplified architecture which can be implementable on every sytem.

– Hardware should be minimised

2.2 Web Scaling Frameworks for Web Services in the
Cloud.

The concept of Web Scaling Frameworks (WSFs) in order to offload scaling to another
layer of abstraction. this models improves the scaling ability of the current system.Web
Application Frameworks (WAFs) focus on the creation of application logic and do not
offer integrated cloud scaling concepts.[5]

WSFs take over the responsibilities of scaling by embedding existing WAFs in a larger
system. The prototype they proposed in this work uses more components and a different
composition than the normal version . It implements a Scaled Application Version that
uses a WSF in combination with a WAF.[5]

7



2.3. Scalability of Web-Based Electronic Commerce Systems

2.2.1 Pros

Web scaling framework can triple the request throughput performance of single mchine.

Caching is highly used and hence maximised the scalability and performance of system.

2.2.2 Cons

– Complex architecture and hence not implementable on every system.

– Too much of hardware is utilized.

2.2.3 How to Overcome

– Simplified architecture which can be implementable on every sytem.

– Hardware should be minimised.

2.3 Scalability of Web-Based Electronic Commerce Sys-
tems

In a Web-based electronic commerce system, users browse product information offered
by an online store and submit requests to purchase selected items. From the userâTMs
perspective, response time is a factor that could impact the acceptability of electronic
commerce. This article is concerned with system architectures for online stores. Empha-
sis is placed on techniques to improve a systemâTMs capacity to support more users with-
out suffering a noticeable degradation in response time performance[3]. Such techniques
have been investigated as part of a Canadian Institute for Telecommunications Research
major project entitled Enabling Technology for Electronic Commerce Applications, de-
veloped in close collaboration with the IBMÂ R© Centre for Advanced Studies[3]. The
basic architecture of a Web-based electronic commerce system is first described along
with the types of data that need to be managed. Next, an overview of existing techniques
for improving system capacity is presented. Finally, highlights of research results ob-
tained as part of the CITR electronic commerce major project are discussed.

A typical Web-based electronic commerce system has a three-tier architecture: the Web
server, electronic commerce application server, and database system. The Web server is
a process that handles requests from users and returns the requested Web pages[3]. The
application server contains the business logic and accesses the database for information

8



Chapter 2. Literature Review

Figure 2.1: Basic system architecture.

such as catalogs, inventory level, and user information, such as registration data and shop-
ping cart content. The three components may reside on the same machine or on different
machines.

2.3.1 Pros

– Use of multiple server cluster means more availability of data.

– With mirror sites, information requested by users is made available at multiple
server sites; each site has its own copy of the database.

2.3.2 Cons

– Each cluster has its own database, any updates to the catalogs must be made to all
the databases.

– Within a server cluster, poor server node selection may lead to some nodes being
saturated while other nodes have surplus capacity.

2.3.3 How to Overcome

– An appropriate selection algorithm should be used for selecting the best server
node.

– Updation of database should be handled carefully

9



Chapter 3

Requirement Analysis

3.1 Platform Requirement :

3.1.1 Supportive Operating Systems :

The supported Operating Systems for client include:

– Linux Operating System (Ubuntu Server os 14.04 / 14.10 Utopic Unicorn) our.

Linux is the operating systems that will support comparative website. Since Linux is
an open source operating system, The project we implemented is developed on Linux
platform. The comparative website is tested on the same Linux OS.

Ubuntu 14.10 is used as server operating system. Apache 2.4 is used as Web server and
for database server Mysql server is used.

3.2 Software Requirement :

The Software Requirements in this project include:

– Web Stress Tool

– Internet Explorer, Mozila Fire Fox, Google Chrome, etc.

For testing the website as well as implemented architecture Web Stress Tool is used. This
tool provides a Ramp test on server by taking input as no of users and the complete url of
the website including login sessions.

10



Chapter 3. Requirement Analysis

3.2.1 Back End Software Requirement

– VM ware Virtual Machine.

– Html.

– Css.

– Php.

– Mysql.

– Java Script.

Web Server Db server is the backbone of the entire project. Main purpose is to design and
implement proposed architecture, VM ware is used to virtually distribute the hardware of
system into different machine, by distributing the machine we gain throughput over the
initial system.

Html, Css, Php is used to create the website for testing purpose of the architecture imple-
mented. An E-Commerce website is built named Jewellery store. This website consists
of all the necessary modules that basically exists on an e-commerce site.

In order to implement the same architecture an Administrator Gui is built using php lan-
guage.

3.3 Hardware Requirement :

3.3.1 Hardware Required For Project Development:

– 2.5 GB Ram.

– 250 GB Hard Disk Minimum.

– Quad Core CPU.

11



Chapter 4

Project Design

4.1 Design Approach

Design is the first step in the development phase for any techniques and principles for
the purpose of defining a device, a process or system in sufficient detail to permit its
physical realization. Once the software requirements have been analyzed and specified
the software design involves three technical activities design, coding, implementation
and testing that are required to build and verify the software. The design activities are
of main importance in this phase, because in this activity, decisions ultimately affecting
the success of the software implementation and its ease of maintenance are made. These
decisions have the final bearing upon reliability and maintainability of the system. Design
is the only way to accurately translate the customer requirements into finished software or
a system. Design is the place where quality is fostered in development. Software design
is a process through which requirements are translated into a representation of software.
Software design is conducted in two steps. Preliminary design is concerned with the
transformation of requirements into data.

4.2 Software Architectural Designs

Our system follows the three tier architecture . First tier consist of GUI, Linguistic com-
ponent and the Database.

1. User: A user sends a http request to access a particular website. The request is send to
the website through the internet.

2. Internet: The internet receives the incoming user request and based on the url the
user has provided, the internet forwards the request to that particular website.

12



Chapter 4. Project Design

3. Load Balancer: The load balancer residing at the website,to ensure load balancing
forwards the user request to one of the available servers. Load balancer aims to optimize
resource use, maximize throughput, minimize response time, and avoid overload of any
single resource.

4.Servers: The servers at the website to which the request is forwarded, answers the
arriving user requests.

Figure 4.1: Software architecture Design
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4.2. Software Architectural Designs

4.2.1 Front End Designs

Register/Login: Initially when the user accesses the webapp he gets a login/register page.

Figure 4.2: Front End Design

Dashboard: The admin logins to the GUI and is directed to the dashboard, which dis-
plays the information of the CPU usage, Memory usage, Data usage and the information
of the system the admin is using based on the IP address the admin has provided.

balancer.png

Figure 4.3: Front End Design
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Chapter 4. Project Design

Local Balancer: This functionality provided helps the admin to forward the incoming
request to more than one machine and to which port of the machine acccording to his
desire. But this features works only for local machine.

Figure 4.4: Front End Design

Balancer Manager: The manager provides the information about the working nodes in
tabular form. This includes information about the load on a specific node, the number of
requests on a node, the node elected, the data sent and received.

15



4.2. Software Architectural Designs

4.2.2 Component Diagram

Figure 4.5: Component Diagram of Scalability Design
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Chapter 4. Project Design

4.2.3 Deployment Diagram

Figure 4.6: Deployment Diagram of Scalability Design
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4.3. Database Design

4.3 Database Design

4.3.1 E-R Diagram

drawing (1).jpg

Figure 4.7: E-R Diagram of Scalability Design
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Chapter 5

Implementation Details

5.1 Assumptions And Dependencies

5.1.1 Assumptions

The following Assumption was taken into consideration:

– The project is about web scalability, so main assumption is all the users will be
served by their requests without increase in the response time, also there will be no
error rate for any of the user once the system is scaled.

– There should not be any occurrence of bottleneck in Database with or without scal-
ing the system, all queries should be processed for any no of users requesting for
the db request.

5.1.2 Dependencies

The dependencies are as follows:

– For Web Server Apache 2.4 web server is used, this server is main backbone of the
whole system, also for database MySQL server is used, all the systems scaled use
this database server in order to process their db queries.

– VM ware virtual machine is used to divide the whole system into different ma-
chines, so the system is dependent on virtual machine software.
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5.2 Implementation Methodologies

Different modules of the project are, Virtualization of the machine, installation of Server
Operating System, installation of servers (Web server Database Server), installation of
load balancer, Caching ,Creation of an E-Commerce website for testing of project, In-
stalling and using web stress tool for testing of scaled and un scaled servers, creating an
admin interface in order to make server configurations ease.

5.2.1 Modular Description of Project

Virtualization: In this module a single machine which was being used as Primary server
is divided using VM ware virtual machine into four different machines for efficient work
and coordination between divided machines.

Purpose for division is, a single machine has (in this case) has more processing power for
different tasks, but when it comes about execution of project half of the processing power
is being wasted i.e not used.

To use that remaining processing power,virtualization is used.

Installation of server Operating system:The operating system used for throughout project
is Ubuntu 14.10 (Utopic Unicorn).

This is a command line interface based Server operating system. Also it is an open source
operating system

Servers:For hosting and scaling the primary web server used is Apache 2.4 web server,
and for database server MySQL server is used.

Load Balancer:An extension of apache web server named mod proxy is used to set the
load balancer.

This load balancer balances the incoming request to the inner nodes for processing and
returns the desired output to the user.

Caching:Caching on web server is used to reduce the server side operations, when a
request arose, first it is being checked in the cache server, if caching is enabled, if found
the cache server serves the request without any processing loads on actual web server.
The Cache server used is Squid server.

E-Commerce website:After implementation of the proposed architecture, to test all the
servers capacity, an E-Commerce based Jewelry store website is being created. This
website is full working website to buy any type of jewelry. This website is stored on the
web servers and it is primary input to the test bed.
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Chapter 5. Implementation Details

Web Stress tool:This is open source tool to test the capacity of the servers. This tool
generates virtual no of users as input provided and shoots queries or request from all the
created users, as an input it takes the url of the website which is being stored on scaled
server.

In ouput it returns multiple graphs of total testing process, this includes main graph that is
response time to no of users graph and error rate to no of users graph, through this graph
we can understand the capacity of server.

Admin Interface:In order to make all the admin side configurations ease, an Admin
dashboard Php based GUI is created. In this GUI you can access as well as configure
your systems for load balancing, Caching, Setting a website to a particular port and many
more.

5.3 Detailed Analysis and Description of Project

5.3.1 Activity Diagram

diagram(1).png

Figure 5.1: Activity Diagram
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5.3. Detailed Analysis and Description of Project

This work is been carried out in four stages:

Step1: The Admin registers himself and logs in to the interface.

Step2: The admin enters the IP address of the system he has logged in or he changes the
previously entered IP if he logged in from a new system.

Step3: Admin configures the local or remote machines to map the request on available
system.

Step4: a) Remote- To configure the requests on remote machine, he enters the remote
machines IP, Username and Password and also the no of machines he desires to use.
b) Local- This process is same as remote process except that it does not asks for Username
and Password as the admin is configuring local machine.

Registration of Administrator: When admin has a particular hosting server, admin can
use the designed interface in order to set all the configurations for scaling as well as port
settings of the website, admin is registered to use the interface.

Admin Dashboard:On this web page descriptions of server is displayed i.e what kind of
operating system is used, what web server is being used, total configuration of the admin
machine and network traffic.

Balancer:In this page a short description is displayed of what a balancer does and what
kind of balancer is used and the configurations inputs is noted that how to provide input.
Ip address of number of backend servers is taken as input as well as Ip address of the
balancer server is taken, on just a click, all the configuration is executed and the admin
server is now configured for scaling purpose.

Caching: If admin wants to enter some of websites or web pages into the cache memory
of the server, here admin can configure for such setting. Input to be taken is Ip address of
the server machine, notes will provide what and how to provide the inputs. And memory
to be allocated for cache is asked on this page. After clicking on config button all the
desired setting is executed on server side and caching is implemented for that server.

Set to Port:If the admin wants a particular website to be hosted on his server but on
different port number, on this page admin can do such settings, inputs to be provided is ip
address of the server, port number on which the site is being to set and the website files.

Admin Shell: An administrator shell is provided to the admin which is php based imple-
mented.

Balancer Manager: When admin configures his system to load balancer, here admin can
manage the balancer configuration, i.e increase or decrease the no of balancing nodes/machines
and can choose the strategy on how the balancer should balance the load.
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Chapter 5. Implementation Details

5.4 Usecase Report

Figure 5.2: ER Diagram
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5.4. Usecase Report

5.4.1 Usecase Report

Title: Web Scalability admin dashboard
Description: Admin dashboard enables the user to configure the system

into an scalable system, also it provides additional informa-
tion of the server machine. Using this dashboard admin can
make its system scalable by enabling load balancing and
caching and setting a website to a port.

Primary
Actor:

Administrator

Preconditions: Well knowledge of the server machine
Post condi-
tions:

By using simple Gui features, admin can make system scal-
able.

Frequency
of Use:

Admin can use at any time.

System Re-
quirement:

Admin server and web server.

Table 5.1: Usecase Report

5.4.2 Class Diagram Report

Title: Web scalability admin dashboard
Description: Admin dashboard enables the user to configure the system

into an scalable system, also it provides additional informa-
tion of the server machine. Using this dashboard admin can
make its system scalable by enabling load balancing and
caching and setting a website to a port.

Primary
Actor:

Administrator. OR User

Preconditions: Well knowledge of the server machine
Post condi-
tions:

By using simple Gui features, admin can make system scal-
able.

GUI Inter-
face:

First user will provide IP address and ports in back ground
shell script will be executed and server will be started.

Database: Databse is used for retrieving the result from. It is the main
component.

Table 5.2: Class Diagram Report
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Chapter 6

Results and Discussion

6.1 Test cases and Result

When the website is tested for load using the webserver stress tool, the results generated
in both cases i.e with load balancing and without load balancing are generated by the
stress tool in the form of graphs.

6.1.1 Unit Testing

Unit testing is a software testing method by which invidual units of source code, sets
of one or more computer program modules together with associated control data, usage
procedures, and operating procedures, are tested to determine whether they are fit for
use. The goal of unit testing is to isolate each part of the program and show that the
invidual parts are correct. For the basic unit testing we configured a virtual machine with
3 GB RAM and Quad core CPU and installed the server operating system Ubuntu server
14.10 Utopic Unicorn, web server Apache and database server MySQL. After completely
configuration, we created an E-Commerce based Jewellry website with database, Then
we placed that website in this configured server. When we tested the website using Web
Stress Tool for 4000 users, the server was unable to handle the load for such bulk. But an
important point to be noted in this case is that even at full load it only used 945 MB RAM
(approximately) out of 3 GB provided. Ideally system without load was occupying 450
MB of RAM i.e the system was only occupying 500 MB of ram and rest of the processing
was getting wasted which is displayed in fig (6.1).

25



6.1. Test cases and Result

(39).png

Figure 6.1: Click Time hits/s ,Users/s.

6.1.2 Functional Testing

Functions are tested by feeding them input and examining the output, and internal pro-
gram structure is rarely considered in this testing.

Ramp tests Ramp Tests are variations of Stress Tests in which the number of users is
increased over the life of the test from a single user to hundreds of users. By reviewing
the graphs of click times and errors, a Ramp Tests can help you determine what maximum
load a server can handle while providing optimal access to web resources.

As discussed in unit testing the system RAM was not utilized fairly, we divided the ma-
chine that we created with 3 GB RAM into five virtual machines each with 512 MB RAM.
The management of these machines required balancing the load. So one of the machines
was choosed as a load balancer, the three of them as working nodes and one as a database
server. These machines were tested for stress without using load balancing.
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Chapter 6. Results and Discussion

Result without LoadBalancer:

Without load balancing, for 4000 users the response time was 16000 ms and also the error
rate shot to 100 percent at around 400 users.

Figure 6.2: Click Times and Errors.

Figure 6.3: Click Time,Hits/s,Users/s.

The above graph shows the result of hits per second and clicks per second for 4000 users.
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6.1. Test cases and Result

Reslt with Loadbalancer.

Figure 6.4: Click Time Error.

With load balancing the response time drop down to 13000 ms for 4000 users and also
the error rate was comparatively very low.

Figure 6.5: Click Time hits/s ,Users/s.

The results achieved using load balancing are more reliable than those obtained without
load balancing technique. Load balancing ensures less reponse time and error rate and
more utilization of available resources.
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Chapter 7

Project Time Line

7.1 Project Time Line Matrix

Figure 7.1: Time Line Matrix
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7.2. Project Time Line Chart

7.2 Project Time Line Chart

Figure 7.2: Time Line Chart

Figure 7.3: Time Line Chart
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Chapter 8

Task Distribution

8.1 Distribution of Workload

8.1.1 Scheduled Working Activities

Activity Time
Period

Comment

Requirement Gathering 13 Days Requirement gathering has took
placed through searching on in-
ternet and taking the ideas, shar-
ing the views among group
members.

Planning 07 Days Planning was done by reviewing
of literature of IEEE papers and
by taking the walkthrough.

Design 07 Days Designing was accomplished by
creating UML diagram, charts.

Implementation 70 days Implementation has done First
creating the backend and then
front end module by module.

Testing 15 days Testing has done by perfoming
unit testing, alpha & Beta Test-
ing, integrated testing and sys-
tem testing.

Deployment 07 days Deployment has done by in-
stalling project on the server.

Table 8.1: Scheduled Working Activities
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8.1. Distribution of Workload

8.1.2 Members actvities or task

Member Activity Time
Period

Start
Date

End
Date

Comment

M1, M2, M3, M4 Requirement
Gathering

07 Days 14/12/15 22/12/15 M1 and M2 has perfomed
the seaching for project re-
quirement on the internet
by reviewing the related
literature and by anlysing
the related prject which
is already available in the
market. Regularly inform
to the other member of
team.

M1, M2, M3, M4 Analysing of
the require-
ment

03 Days 23/12/16 28/12/16 M1, M2, M3, M4 done
the requirement analysing
of project by sharing the
ideas, and by discussing
on related information
which is gather by the
M1, And M2. M3 and
M4 has created the list of
requirement after every
meeting

M1, M2, M3, M4 Finalysing the
requirement

03 Day 28/12/15 30/12/15 Whole team finalize the re-
quirement. M1 and M4
has created a list of finalise
requirement.

M1, M2, M3, M4 Planning 07 Days 31/12/15 20/01/16 Planning has done by
walkthrough and by
analysing the available
product. M2 and M3
creats a list of funtion
which will be implement
in the project. Each and
every module were discuss
in every group meeting
and M1 and M2 creates a
blue print for project .
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Chapter 8. Task Distribution

M3, M2 Front End design 07 Days 11/01/16 19/01/16 M3 and M2 creates the
front end of the sys-
tem and data flow dia-
grams and informed to
the whole team regu-
larly.

M1, M4 Back End design 07 Days 11/01/16 19/01/16 M1 and M4 creates
back end of the sys-
tem and data flow dia-
grams and informed to
the whole team regu-
larly.

M2,M3 Installation
of Server OS
Ubuntu14.10

05 Days 20/01/16 26/01/16 M2 and M3 Installed
Server OS Ubuntu14.10
discuss on it with other
team membar

M4 Installation of
Server (DB and
Web)

02 Days 26/01/16 27/01/16 M4 installed Server
(DB and Web) and
discuss on it with other
team member

M1 ,M4 Installation of
Cache Server

07 Days 27/01/16 04/02/16 M4 and M1 installation
of Cache Server. M4
and M1. Discuss the
installation to the other
member of team.

33



8.1. Distribution of Workload

M2, M4 Implementation
of Load Balancer

12 Days 03/02/16 18/02/16 M2 and M4 done the
load balancer and dis-
cuss the method with
other team member reg-
ularly.

M3, M4 Implementation
of setting of port

02 Days 18/02/16 19/03/16 M3 and M4 imple-
mented the setting of
ports.

M1, M3 Implementation
of Web-
Site(Jewellery)

20 Days 02/03/16 29/03/16 M1 and M3 im-
plemeted the website
(Jewellery). And reg-
ularly giving update to
other members.

M2 ,M3 Implemantation
of testing soft-
ware(Webstress)

07 Days 29/03/16 06/04/16 M2 and M3 imple-
mented the testing
software(Webstress)
and explain the work-
ing of it to other
members.

M1, M2,M3, M4 Implementation
of GUI for
Project

05 Days 07/04/16 13/04/16 M1, M2, M3 and M4
implemented the GUI
for project.

M2 ,M3 Testing and Gen-
erating report

03 Days 14/04/16 18/04/16 M2 and M3 have tested
and generated the re-
port.

Table 8.2: Member Activities and Task
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Chapter 9

Conclusion and Future Scope

9.1 Conclusion

Scalability is an important constraint in this century as several businesses are imple-
mented on web in order to spread it throughout the globe. We have presented a new
approach and several techniques for scaling web server. The new technique differs from
existing technique in that with the use of minimum caches and improving load balancing
technique we can achieve high request handling capacity of a server.

Cache operations are costly,so when the load on the server is less than its capacity this
operations should be preserved, We divided the throughout architecture into two layers,
this provides to reduce costly operations.

This solution we purposed in paper will be optimal as it uses a bit of hardware that is cache
and software in load balancer will be used in optimal and efficient web server scaling.

9.2 Future Scope

1. In Our project we have virtualized our server by own but in future we can add
monitoring machanism in which it will look toward traffic or load and
automatically create number of virtual server by its own.

2. In future we can add one mechanism that continously check all the server
functioning.In this it mainly check whether the server is functioning properly or
not. If due to some reson any one of server crashes down we it will automatically
discard it and the functionality will not be effected.
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Abstract— Web applications are the main source of 

information exchange of businesses over the globe. The 

main problem over the globe about the web applications is 

the service of the particular server. As a server has its own 

capacity to handle some amount of particular clients, there is 

always a possibility the number of Clients may get 

increased, at this time most of servers are unable to respond. 

This paper gives a purposed solution for Servers to handle 

more clients even when its capacity exceeds without scaling 

it horizontally that is (without increasing hardware). 

Management of clients requests on a web Server is managed 

In order to increase the capacity on a server and hence it 

gets capable to handle more clients. Architecture for scaling 

web servers is uses application level scaling which makes it 

flexible to be applied on any other servers. 

Key words: Scaling, Web Server Scaling, Caching, Load 

Balancer, Application Level Scaling, Scalability 

I. INTRODUCTION 

Now-a-days E-commerce sites are increasing rapidly. 

Almost all selling and buying is done on E-commerce sites. 

Since these type of business is growing fast the system 

which is responsible for this type of business should also be 

improved so as to be compatible with increasing number of 

users. It is important to improve the system so as to 

maintain its performance. If the performance of   this type of 

system is lowered then it will lead to the losing a customers. 

Losing customers means loss in business. In E-Commerce 

one hour of site failure results leads to loss of millions of 

dollars. Web applications typically undergo maintenance at 

a faster rate than other systems; this maintenance often 

consists of small incremental changes [1] 

This influenced us to introduce scalability in these 

systems so as to improve the system and making system 

relevant to user. Scalability is essential term to achieve the 

best performance from the system. Scalability can be 

defined as “The potential or capability of a system to handle 

more loads without increasing the response time of request”. 

In Web Scalability the capacity of Servers to handle a 

particular number of users request is increased, through this 

scalability is achieved. A Web application can be 

differentiated from a Web site based on the “ability of a user 

to affect the state of the business logic on the server”[2] 

II. LITERATURE REVIEW 

For Web Scalability we have observed and studied 

following. 

A. Scaling using Load Balancer: 

When multiple web servers are present in a server group, the 

HTTP traffic needs to be evenly distributed among the 

servers. In the process these servers must appear as one web 

server to the web client, for example an internet browser. 

The load balancing mechanism used for spreading HTTP 

requests is known as IP spraying. The equipment use for IP 

spraying is also called the load dispatcher or network 

dispatcher or simply the load balancer. In this case the 

sprayer intercepts each HTTP request, and redirects them to 

a server in the server cluster.[5]  

Depending on the type of the sprayer involved, the 

architecture can provide capability, load balancing and fail 

over requirements. Load balancing of servers by an IP 

sprayer can be implemented in different ways. These 

methods of load balancing can be set up in the load balancer 

based on available load balancing types. There are various 

algorithms used to distribute the load among the available 

servers. Algorithms: Random Allocation, Round Robin, 

Weighted Round robin. 

B. Scaling using Caching 

A powerful concept for reducing the delay caused in 

processing request and saving bandwidth is caching web 

resources. Here the resources refer to web pages. We find 

caches at Web browsers, organization proxy server caches, 

Internet service providers, content delivery networks 

(CDNs), and Web servers. A cache at the server side is 

mainly used to reduce the time required for processing a 

request. Server side caching is the act of caching data on the 

server. Data can be cached anywhere and at any point on the 

server that makes sense. It is common to cache commonly 

used data from the database to prevent hitting the database 

every time the data is required. We cache the results from 

competition scores since the operation is expensive in terms 

of both processor and database usage. It is common to cache 

pages or page fragments so that they don’t need to be 

generated for every visitor. 

1) Cache Hit Ratio: 

A cache-hit ratio is the number of times the database found 

something in cache divided by the number of times it looked 

for some object in the cache. The higher the ratio, the more 

effective the cache is at improving performance. Taking into 

account the cache hit ratios; the frequency of reference f to 

Web documents is inversely proportional to the rank r, 

which is measured in terms of the document’s popularity. 

The most popular document has r = 1, the second most 

popular has r = 2, and so on. 

This relationship, called Zipf’s law, states that: f = 

k/r . . . where k is a constant.  

Types of Caching Used: 

 Object caches: are used to store objects for the 

application to reuse. These objects are either come from 

a database directly or are generated through data 

computation. 

 Memcached: It is a high-performance, distributed 

memory object caching system, generic in nature, but 
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intended for use in speeding up dynamic web 

applications by alleviating database load. 

 Reverse Proxy Cache: Reverse proxy caches is a 

strategy for web application caching. While object 

cache are usually used to cache database objects, 

reverse proxy cache are used to cache the result of web 

server e.g. web, DNS and other network lookups. 

Reverse proxy caches reduce loads on web servers and 

improve response time to user requests, facilitating 

scalability. 

C. Scaling Database: 

The database is the most common bottleneck in web 

applications, since a lot of reads and writes occur at the 

database level, and hence the primary focus in this book 

section is on scaling them. A scalable database is one that 

performs well under increasing traffic and dataset. 

1) Methods for Database Scaling 

a) Replication 

 Database replication using the master-slave model  

 Multi-master Replication Model  

 Replication Delay and Consistency 

b) Partitioning  

 Round Robin Partitioning  

 Hash Partitioning  

 Range Partitioning  

 Vertical Partitioning  

 Horizontal Partitioning 

2) Short falls in Existing System: 

 Multiple Web servers are assigned using horizontal 

scaling technique and appropriate load balancing 

technique is applied i.e DNS load balancer. 

 Cache operations are costly, hence existing system 

larger amount of cache is assigned for the repeated 

request of data. 

3) How to Overcome: 

 In Proposed method we use server virtualization to 

create virtual server of single server and the 

applying load balancing technique in order to scale. 

 Using Zipf’s Law and accurate calculations of the 

demanded page, It will be stored in the cache 

III. PROBLEM STATEMENT 

We are Scaling web servers on application level not by 

using horizontal or vertical scaling techniques. 

IV. OBJECTIVE AND SCOPE 

A. Objective: 

The objective of the proposed system is to scale a web 

server on application level that is to use minimum hardware 

and scale the requests on server side. The proposed system 

would have the capability to handle clients request more 

than its original limit. Since available solutions in market 

are to increase the Hardware components another solution is 

to increasing the number of server machines. 

B. Project Scope: 

 Server will be capable of handling more concurrent 

user then conventional server. 

 Caching gives Boost to handle more concurrent user. 

 Web security at client side of cookies. 

 Simultaneous updating of cache. 

 More space required for cache operation. 

V. PROPOSED SYSTEM ARCHITECTURE 

A. Basic System Architecture: 

A typical Web-based electronic commerce system has a 

three-tier architecture: the Web server, electronic commerce 

application server, and database system[3]. Basic system 

follows three tier Architecture. Server is divided according 

to Web Server, Application Server and Database Server. 

The Web server is a process that handles requests from users 

and returns the requested web pages. The application server 

contains the business logic and accesses the database for 

information. 

Basically the work of the Architecture is, A user 

asks any request to a server, in Server the Web server 

Process the request and forwards it to the application server. 

Application Server has access to database of the Server, 

through accessing the data it returns the information 

requested by the client 

 
Fig. 1: Basic 3-tier Architecture 

B. Proposed Architecture: 

The System is divided into multiple components in which 

uses the three tier architecture along with some 

modifications. 

1) Load Balancer:  

On server side this is the first component to receive the users 

request. At a particular second it receives thousands of 

clients requests. The main purpose of this load balancer is to 

divide the requests among different web servers. Load 

balancer uses the technique such as DNS Load balancing. In 

this proposed system Architecture the load balancer will use 

this technique and the algorithm used will be Round Robin 

or Weighted Round Robin Along with Load balancer there 

is a counter which counts the number of concurrent users 

according to their respective ip address. Calculating these 

algorithms load balancer will forward the request to 

application server. 

2) Web Server:  

Main work of web server is process HTTP or any other 

protocol request, The primary function of a web server is to 

store, process and deliver web pages to clients. The 

communication between client and server takes place using 

the Hypertext Transfer Protocol (HTTP)[wiki]. In this 

Architecture the web server requests for web pages to the 

application server which are stored in database. If the 

request is found on the fragment it will retrieve from that 

fragment. 

3) Application Server:  

An application server, according to our definition, an 

application server exposes business logic to client 

applications through various protocols, possibly including 

HTTP [javaworld]. Here an application server will receive 

the request from the web server, It has all access to the 
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database of the server. Application server will process the 

db request and will send reply to the web server. 

4) Payment Gateway:  

This is a third party gate way provided on internet for safer 

mode of payment. 

5) Database Server:  

A database server is a computer program that provides 

database services to other computer programs or computers, 

as defined by the client–server model[wiki] 

 
Fig. 2: Proposed System Architecture 

6) Caches: 

 MDP-Most Demanded Pages: In this cache recent 

most demanded page will be stored.  Calculations 

will be done before assigning the caches to gain 

maximum hit ratio. 

 HP- Home Page: This Home page cache will be 

created if the servers capacity and the capacity of 

MDP cache is exceeded. The user will be redirected 

to home page in such scenarios. 

 Cookies: When the users request is redirected from 

the MDP cache, some information will be sent to 

users along with the page in form of cookies. This 

technique will allow reducing the calculation for next 

page on the server. 

 Dead Cache: When user want to enter into the 

payment mode to payment gateway user goes into 

inactive state or dead state. In this protocol the server 

forwards the user session to the   dead cache along 

with the counter. Advantage of this cache, the counter 

will count the users gone for payment and the server 

will take new users requests at mean time. 

VI. TECHNICAL DETAILS 

A. Methodology: 

According to proposed architecture the system is divided 

into different components. 

1) Scaling Method Flow:  

 Distribute the server into multiple virtual servers to 

achieve clustering.  

 Uses DNS load balancer to distribute the load on 

virtual servers. 

 Appropriate Caching technique is used to create 

caches to reduce load.  

 Data base is distributed into replica or fragments to 

avoid bottle neck and to reduce response time. 

2) Description of Methodology 

a) Load Balancing Algorithms used to handle requests 

on Servers. 

DNS based Load Balancing Technique: DNS-based load 

balancing represents one of the early server load balancing 

approaches. The Internet’s domain name system (DNS) 

associates IP addresses with a host name. If you type a host 

name (as part of the URL) into your browser, the browser 

requests that the DNS server resolve the host name to an IP 

address. The DNS-based approach is based on the fact that 

DNS allows multiple IP addresses (real servers) to be 

assigned to one host name, as shown in the DNS lookup 

example in Listing. DNS is an efficient solution for global 

server load balancing, where load must be distributed 

between data centers at different locations. Often the DNS-

based global server load balancing is combined with other 

server load balancing solutions to distribute the load within 

a dedicated data center. Algorithms: Randomized 

Distribution Round Robin Weighted Round Robin 

3) A Local Server will be distributed into Virtual Servers. 

a) Technique: 

 Set your hostnames or setup OS to recognize your 

local websites. 

 Create a folder for the website.  

 Setup Apache to serve multiple sites. 

4) Creating Caches of Frequent used Data. 

As stated in the book A Fresh Graduate’s Guide to Software 

Development Tools and Technologies caching of web paged 

is achieved by mathematical calculations by zipf’s principle.  

a) Caching techniques:  

 Object Cache.  

 Memcached.  

 Reverse Proxy cache  

 Content Delivery Network. 

5) Data fragmentation method is applied.  

When particular piece of data is frequently accessed by the 

users at a particular site, it is more feasible to fragment that 

piece of information and store that copy of fragment at that 

site rather than storing the whole information including 

which is used very often. Thus the information can be 

retrieved more easily from that site, also the time required 

for retrieval decreases as there is less data stored to search 

for. This decreases the size of data store data each site and 

also speeds up the accessibility. Also it reduces the bottle 

neck attack. 

a) Techniques:  

 Replication 

 Database replication using the master slave 

method.  

 Multi-master Replication model. 

 Replication delay and consistency.  

 Partitioning 

 Vertical 

 Horizontal 

B. Project Requirements: 

1) Software Requirements 

 Technology              : PHP 

 Web Technologies    : Html, JavaScript, CSS 

 Database                  : Mysql 

 Web Server              : APACHE 
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2) Hardware Requirements 

 Processor           : Intel 

 RAM                 : 1GB 

VII. MARKET POTENTIAL 

A. Market Potential of Project: 

There is no proper solution in current market to overcome 

the scalability issue. 

Other solutions are to scale vertical or horizontal 

which are time consuming, costly, and high maintenance 

operations 

Another solution is cloud computing in which web 

servers are hired on timely basis. 

Solution purposed in this paper is scaling web 

servers by managing the requests among the server in order 

to reduce the response time and thereby increasing the 

capacity of then server 

B. Competitive Advantage of Project- 

1) Previously web Scaling was to improve the 

hardware capacity or increasing the number of 

machines in web server. 

2) This type of scaling is often costly and increases 

the maintenance when it is implemented. 

3) This project provides software scaling in order to 

improve scalability 

4) Software web Server scaling will provide reduce 

maintenance cost, reduce Hardware cost, easy 

maintainability. 

VIII. CONCLUSION AND FUTURE SCOPE 

A. Conclusion: 

Scalability is an important constraint in this century as 

several businesses are implemented on web in order to 

spread it throughout the globe. We have presented a new 

approach and several techniques for scaling web server. The 

new technique differs from existing technique in that with 

the use of minimum caches and improving load balancing 

technique we can achieve high request handling capacity of 

a server. Cache operations are costly, so when the load on 

the server is less than its capacity this operations should be 

preserved, we divided the throughout architecture into two 

layers, this provides to reduce costly operations. This 

solution we purposed in paper will be optimal as it uses a bit 

of hardware that is cache and software in load balancer will 

be used in optimal and efficient web server scaling. 

IX. FUTURE SCOPE 

 There is no proper solution in current market to 

overcome the scalability issue. 

 Other solutions are to scale vertical or horizontal which 

are time consuming, costly, and high maintenance 

operations 

 Another solution is cloud computing in which web 

servers are hired on timely basis. 

 Solution purposed in this paper is scaling web servers 

by managing the requests among the server in order to 

reduce the response time and thereby increasing the 

capacity of then server 

ACKNOWLEDGEMENT 

We would like to thanks our guide Prof. P.S. Lokhande for 

giving his valuable guidance who also provided expertise 

that greatly assisted the research. 

REFERENCES 

[1] E. Kirda, M. Jazayeri, C. Kerer, and M. Schranz, 

“Experiences in Engineering Flexible Web Services,” 

IEEE MultiMedia, vol. 8, no. 1, pp. 58-65, Jan. 2001. 

[2] J. Conallen, Building Web Applications with UML. 

Addison-Wesley, 2000. 

[3] Gregor v. Bochmann,”Scalability of Web-Based 

Electronic Commerce Systems” July 2003. 

[4] Daniel A. Menascé, “Scaling website through caching”, 

George Mason University menasce@cs.gmu.ed June 

2003 

[5] Sameena Naaz “Load Balancing Algorithms for Peer to 

Peer and Client Server Distributed Environments.” June 

2012. 

[6] [wiki] www.wikipedia.org 

[7] [java world]www.javaworld.com 



Chapter 10

Appendix I

10.1 Webserver Stress Tool

Most websites and web applications run smoothly and correctly as long as only one user
(e.g. the original developer) or just a few users are visiting at a given time. But what
happens if thousands of users access the website or web application at the same time?

Using Webserver Stress Tool you can simulate various load patterns for your webserver
which will help you to find problems in your webserver set up. With steadily increasing
loads (so called ramp tests) you are able to find out how much load you server can handle
before serious problems arise.

10.1.1 Features of Web Stress Tool

– Webserver Stress Tool simulates anywhere from a few users to several hundred
users accessing a website via HTTP/HTTPS at the same time.

– Based on a set of URLs or using a VBScript the software simulates independent
users requesting webpages from that URL including images, frames etc.

– Each user is simulated by a separate thread with its own session information (e.g.
cookies are stored individually for each user). URLs can be parameterized for each
user and the sequence of URLs can be varied.
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10.1.2 Webserver Stress Tool can be used for various tests

– Performance Tests are used to test each part of the webserver orthe web application
to discover what parts, if any, are slow and how you can make them faster. Most
often this is done by testing various implementations of single web pages/scripts to
determine a configuration of code that is the fastest.

– Load Tests are performed by testing the website using the best estimate of the traffic
your website must support. Consider this likea real world test of the website.

– Stress Tests are simulated âœbrute forceâ attacks that apply excessive load on your
webserver. Real world situations like this can be created by a massive spike in users
caused, innocently enough, by a new advertising campaign.

– Ramp Tests are used to determine the maximum threshold of users that can be
served before error messages are produced.

10.1.3 Test result can be viewed as

Webserver webstress tool also provides serveral /ways to view results.

– Several eas.y to use graphs

– Summer Log.

– Detailed Log.

– Machine readable request Log(CSV).

– Raw graph data(CSV).
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