5

6

SE/EE & EXTC/SEM-IV CBSGS/AM-IV

QP Code: 545802

(3 Hours)

[Total Marks: 80

N.B.: (1) Question No.1 is compulsory.

- (2) Attempt any Three from the remaining.
- 1. (a) Find the extremal of the functional $\int_{0}^{1} [y'^{2} + 12xy] dx$ subject to y(0) = 0 and y(1) = 1.
 - (b) Verify Cauchy Schwartz inequality for u = (1,2,1) and v = (3,0,4) also find the angle between u & v.
 - (c) If $\lambda \& X$ are eigen values and eigen vectors of A then prove that $\frac{1}{\lambda}$ and X are eigen values and eigen vectors of A⁻¹, provided A is non singular matrix.
 - (d) Evaluate $\int_{C} \frac{e^{2z}}{(z+1)^4} dz \text{ where } C: |z| = 2$
- - (b) Find eigen values and eigen vectors of A

where
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

(c) Obtain Taylor's and two distinct Laurent's expansion of $f(z) = \frac{z-1}{z^2 - 2z - 3}$ indicating the region of convergence.

TURN OVER

VI-MA/SASAD II-M38/27X38 33/38

QP Code: 545802

6

6

8

6

8

-2-

3. (a) Verify Cayley-Hamilton Theorem for

 $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and hence find A^{-1}

(b) Using Cauchy Residue Theorem, evaluate

 $\int_{-\infty}^{\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} \, \mathrm{d}x$

- (c) Show that a closed curve 'C' of given fixed length (perimeter) which encloses maximum area is a circle
- 4. (a) Find an orthonormal basis for the subspace of R³ by appling Gram-Schmidt process where S {(1,1,1), (0,1,1) (0,0,1)}.
 - (b) Find A⁵⁰, where

 $A = \begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix}$

(c) Reduce the following Quadratic form, into canonical form & hence find its rank, index, signature and value class where.

 $Q = 3x_1^2 + 5x_2^2 + 3x_3^2 - 2x_1x_2 - 2x_2x_3 + 2x_3x_1$

- 5. (a) Using the Rayleigh-Ritz method, find an approximate solution for the extremal of the functional $\int_{0}^{1} \{xy + \frac{1}{2}y'^{2}\} dx$ subject to y(0) = y(1) = 0.
 - (b) Prove that $W = \{(x,y) | x = 3y\}$ subspace of R^2 . Is $W_1 = \{(a,1,1) | a \text{ in } R\}$ subspace of R^3 ?

TURN OVER

(c) Prove that A is diagonizable matrix. Also find diagonal form and

transforming matrix where $A = \begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix}$

- 6. (a) By using Cauchy Residue Theorem, evaluate $\int_{0}^{2\pi} \frac{\cos^2 \theta}{5 + 4\cos \theta} d\theta.$
 - (b) Evaluate $\int_{C} \frac{z+4}{z^2+2z+5} dz$ where C: |z+1+i| = 2.
 - (c) (i) Determine the function that gives shortest distance between two given points.
 - (ii) Express any vector (a,b,c) in \mathbb{R}^3 as a linear combination of V_1, V_2, V_3 where V_1, V_2, V_3 are in \mathbb{R}^3 .