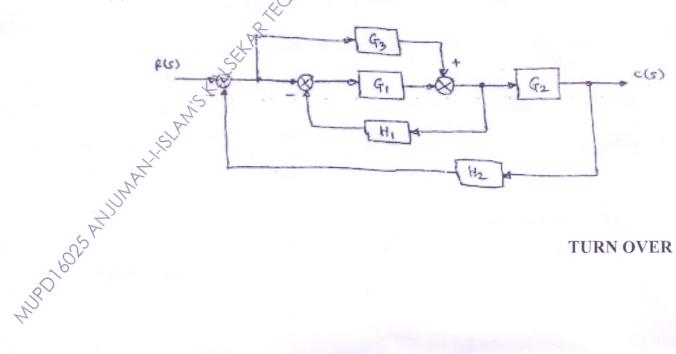

Q.P. Code: 546202

(3 Hours)

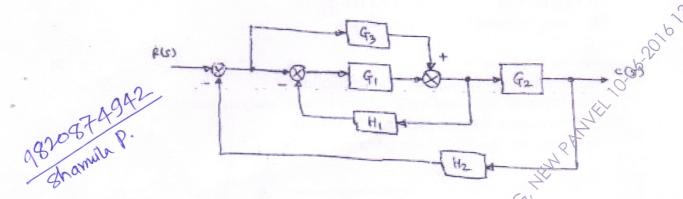
[Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.


- (2) Answer any four out of remaining six questions.
- (3) **Figures** to the **right** indicate **full** marks.
- (4) Assume suitable data if necessary.
- Answer the following:-
 - (a) Explain the concept of relative stability.
 - (b) What do you mean by frequency domain analysis and explain the frequency domain performance indices.
 - (c) Find out the T.F. of the given network.

(e) The forward path gain of a system is 2.5 and Pole-zero configuration of the system is shown below, find the overall transfer function and type of the system for unity feedback.

(a) Reduce the block diagrw:n and obtain its transfer function.



TURN OVER

10

2

(b) Draw the corresponding signal flow graph of given block diagram and find $\frac{C(s)}{R(s)}$

(a) State and prove properties of state transision matrix and check controllability [2] 0]x $G(s) = \frac{40(s+2)}{s(s+1)(s+40)}$ mine: (i) Type
(ii) and observability for the system.

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 6 & 5 \\ 1 & 0 & 2 \\ 3 & 2 & 4 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \mathbf{u}$$

$$y = \begin{bmatrix} 1 & 3 & 0 \end{bmatrix} x$$

(b) A unity feedback system has -

Determine:

- (iii) Error for ramp !nput with magnitude 4.

(a) Discuss the stability of the following systems fer given characteristic equation 10 using Routh-Hurwitz criterion.

(i)
$$s^6 + 48^5 + 3s^4 + 16s^2 - 64s - 48 = 0$$

(i)
$$s^6 + 4s^5 + 3s^4 + 16s^2 - 64s - 48 = 0$$

(ii) $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$

(b) A feedback comrol system has an open-loop transfer function.

$$G(S) = \frac{K}{S(S+3)(S^2 + 2S + 2)}$$

Find the root-locus as $k \to 0$ to ∞

10

10

(a) For a particular unity feedback system,

10

 $s(s+1)(s^2+5x+121)$ 242(s+5)

Sketch the Bode plot and find Wgc, Wpc, G.M., P.M. and comment on stability. 10.00.20/6/3.40.40

(b) For a certain control system

G(s).H(s) = .s(s+2)(s+10)

Sketch the Nyquist plot and hence calculate the range of K for stability.

Explain the frequency domain specifications.

6. (a)

20

- (b) Explain the concept of Neuro-Fuzzy adaptive control system.
- Write short note on: Steady state errors in feed back control system and their types.

Course: S.E (All Branches)

QP Code 546202

Correction

Please note the Corrections in question paper Q.P. code 546202 as follows.

- 1. Paper is of 80 marks.
- 2. Instuctios to students:
- 1) Q.1 is compulsory
- 2) Answer any Three from remaining five questions.

Date and Time 10/06/2016 03:00 PM