Q. P. Code: 584802

3 Hours

Total Marks - 80

5

10

10

N.B.:- (1) Question no **ONE** is compulsory.

- (2) Attempt any THREE questions out of remaining questions.
- (3) Assume suitable data if necessary and justify the same.
- (4) Use graph paper and semilog paper wherever necessary.
- Q 1. Answer any FOUR from the following questions.
 - a. Functionally, how do closed-loop systems differ from open-loop systems?
 - b. Find the transfer function, X(s) / F(s), for the system of Figure 1.

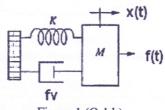
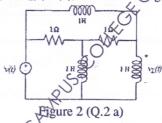



Figure 1 (Q.1 b)

- c. Briefly state and explain the Nyquist criterion.
- How to convert a system represented in state space to transfer function.
- Witer func The Br How to determine steady state error characteristics from Bode plot?
- Find the transfer function, $G(s) = V_L(s)/V(s)$, for the circuit given in Figure 2. Q 2 a)

Reduce the block diagram shown in Figure 3 to a single block representing the transfer

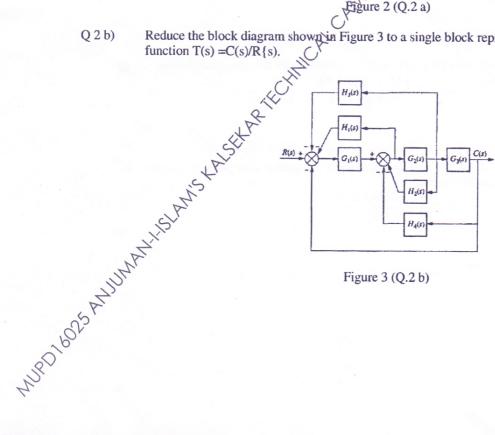


Figure 3 (Q.2 b)

[Turnover

Q 3 a) Draw a signal-flow graph for the state space following state equation

10

$$x = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -3 & 1 \\ -3 & -4 & -5 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} r ; y = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix} x$$

10 10 13:Ab.51

RAWEL 20.52.2010 3:Ab.51 Using Mason's rule, find the transfer function, T(s) = C(s)/R(s), for the system represented Q 3 b) by Figure 4.

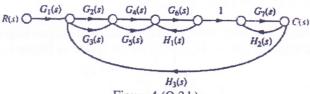


Figure 4 (Q.3 b)

For the unity feedback system find the steady-state errors for the following test inputs: Q 4 a) 25u(t), 31t u(t), $47 t^2 u(t)$.

10

$$G(s) = \frac{450(s+8)(s+12)(s+15)}{s(s+38)(s^2+2s+28)}$$

Find the number of poles in the left half-plane, the right half-plane and on the $j\omega$ axis for the system of Figure 5. Comment on stability Q4b) 10

C(s)Figure 5 (Q.4 b)

- For each pair of second-order system specifications that follow, find the location of the Q 5 a) 10 second-order pair of poles.
 - a. %OS = 12%; Ts = 0.6 second
 b. %OS = 10%; Tp = 5 seconds

Sketch the root locus for the unity feedback system for the transfer function given below $G(s) = \frac{K(s+2)(s+6)}{s^2 + 8s + 25}$ Q 5 b)

10

$$G(s) = \frac{K(s+2)(s+6)}{s^2 + 8s + 25}$$

- Sketch the Nyapist diagram of the unity feedback system of $G(s) = \frac{(s+2)}{s^2}$ Q 6 a) 10
- Determine gain margin, phase margin, gain crossover frequency and phase crossover Q6b) frequency for following transfer function

$$G(s) = \frac{100(s+2)}{s(s+5)(s+10)}$$