10/05/16

SE (SEM-IV) OID EXT(-AMI-IV

QP Code:544700

2

5(a) Expand f(z) =
$$\frac{1}{z^2(z-1)(z+2)}$$
 about z=0 when i) $|z| < 1$ ii) $|z| < 2$ iii) $|z| > 2$ [8]

(b) Using Cayley Hamilton theorem find $A^6 - 6A^5 + 9A^4 + 4A^3 - 12A^2 + 2A - I$

where
$$A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$$
 [6]

- (c)Find the bilinear transformation which maps the points z=1,i,-1 from the Z plane on to the points $0,1,\infty$ in W plane [6]
- 6(a) By using Stoke's theorem evaluate $\int_C [(x^2+y^2)\hat{i}+(x^2-y^2)\hat{j}]d\hat{r} \text{ where C is the}$ boundry of the region enclosed by circles $|x^2+y^2|=4$, $|x^2+y^2|=16$. [8]
- (b) Show that the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$ is non derogatory. [6]
- (c)Show that the following function

$$f(z) = \frac{x^2 y^5 (x + iy)}{x^4 + y^{10}} \quad z \neq 0$$

=0 z=0 is not analytic at the

[6]

origin although Cauchy Riemann equations are satisfied.

- 7(a) Evaluate $\iint F dx$ using Gauss Divergence theorem, where $\widetilde{F} = 4x\widetilde{i} 2y^2 \widehat{j} + z^2 \widehat{k}$ and S is the region bounded by $y^2 = 4x, x = 1, z = 0, z = 3$ [8]
- (b) Find the image of a circle IzI=2 under the transformation w= z+3+2i.Also draw the figure [6]
- (c)Expand f(x)=1 in (0<x<1) in a series as $1=\sum \frac{2}{\lambda_n J_1(\lambda_n)} J_0(\lambda n(x))$ where $\lambda_1, \dots \lambda_n$ are positive roots of $J_0(x)=0$ [6]

[OLD COURSE]

(3 Hours)

[Total Marks:100]

- N.B. (1) Question No. 1 is compulsory.
 - (2) Attempt Any FOUR questions out of the remaining SIX questions.
 - (3) Figures to the right indicate full marks
- 1(a) Prove that eigen values of Hermitian matrix are real.

[5]

(b) Construct an analytic function whose real part is $x^4 - 6x^2y^2 + y^4$

[5]

(c) A vector field is given by $F = (y \sin z - \sin x)\hat{i} + (x \sin z + 2yz)\hat{j} + (xy \cos z + y^2)\hat{k}$.

Show that F is irrotational and hence find its scalar potential.

[5]

(d) Prove that $J_{-1}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.

[5]

2(a) Verify Green's theorem in plane for $\int (xy + y^2)dx + x^2dy$ where C is the

close curve of the region bounded by y = x and $y = x^2$.

[8]

(b) If $A = \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix}$ then prove that 3 tanA=A tan3

[6]

(c) Find the image of the region bounded by x=0,x=2,y=0,y=2 in the Z plane under the transformation w=(1+i)z

[6]

3(a) Show that the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ is diagonalizable. Find the

transforming matrix and the diagonal matrix.

[8]

(b) Evaluate $\int zdz$ along $x = t^2$, y = t from O(0,0) to B(4,2)

[6]

(c) Evaluate $\int \frac{e^{2z}}{(z-1)(z-2)} dz$ where C is circle |z|=3.

[6]

4(a) Reduce the given quadratic form $2x^2 + y^2 - 3z^2 + 12xy - 4xz - 8yz$ to canonical form and find rank and signature.

[8]

(b) Evaluate by Residue theorem,

$$\int_{0}^{2\pi} \frac{\cos 3\theta}{5 + 4\cos \theta} d\theta$$

[6]

(c) Prove that
$$J_{\frac{5}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left\{ \frac{3 - x^2}{x^2} \sin x - \frac{3}{x} \cos x \right\}$$

[6]