Q.P. Code: 543002

(Old Course)

(3 hours)

[Total Marks: 100

- N.B. 1. Question No. 1 is compulsory. Attempt any FOUR questions from Question No 2 to Question No 7.
 - 2. Figures to the right indicate full marks.
 - 3. Use of statistical tables is permitted.
- Q.1 a) If $A = \begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$ find eigen values and vectors of $4A^{-1} + 3A + 2I$.
 - b) Find values of a,b and c if $\overline{F} = (axy + bz^3)i + (3x^2 cz)j + (3xz^2 y)k$ is irrotational.
 - c) Obtain mean and variance of Binomial distribution. 05
 - d) Two lines of regression are given by 6y = 5x + 90;15x = 8y + 130 Find 05 $\overline{x}, \overline{y}$ and coefficient of correlation.
- Q.2 a)

 Reduce to normal form and find rank of $A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$
 - b) Prove that vector field $\overline{F} = (y+z)i + (z+x)j + (x+y)k$ is irrotational and find its scalar potential.
 - c) X is a continuous random variable with probability density function $f(x) = kx(1-x); 0 \le x \le 1$. Find k , mean value and variance.
- Q.3 a)

 Find eigen values and eigen vectors of $A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$.
 - Using Green's theorem evaluate $\int_{C}^{1} \frac{1}{y} dx + \frac{1}{x} dy$ where C is the

boundary of the region defined by $x = 1, x = 4, y = 1, y = \sqrt{x}$.

- c) In a distribution exactly normal, 7 % of the items are under 35 and 89% are under 63. Find mean and standard deviation of the distribution.
- Q.4 a) If $A = \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix}$ prove that $3 \tan A = A \tan 3$.
 - b) in a bombing attack, there is 50 % chance that a bomb dropped hits the target. Two direct hits are required to destroy the target completely. How many bombs must be dropped to have 99% or more chance of destroying the target?

	c)	Using Stroke's theorem evaluate $\int_C \overline{F} \cdot d\overline{r}$ where $\overline{F} = yi + zj + xk$	80
		where C is the boundary of the region given by $x^2 + y^2 = 1 - z$ and	
		z > 0.	
Q.5	a)	Using congruent transformations reduce	06
		$Q = 3x^2 + 2y^2 + z^2 + 4xy - 2xz + 6yz$ to diagonal form. Find	
		rank,index,signature and value class of Q.	
	b)	[2 3 4]	06
		Test whether the matrix $A = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ is diagonalizable. Justify	
		0 0 1	
		Valur answer	
	c)	your answer. What is rank correlation?Obtainspearmann's rank correlation	80
	C)	coefficient for the following data.	
		X: 10 12 18 18 15 40	
		Y: 12 18 25 25 50 25	
Q.6	a)	Test whether $A = \begin{bmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4 \end{bmatrix}$ is derogatory or not. Justify your	06
		Test whether $A = \begin{bmatrix} 4 & 7 & -1 \end{bmatrix}$ is derogatory or not. Justify your	
		-4 - 4 4	
		answer.	
	b)	Examine the following system for consistency and solve if it is	06
	D)	consistent:	
		2x - 3y + 7z = 5; 3x + y - 3z = 13; 2x + 19y - 47z = 32.	
	c)	Use Gauss-divergence theorem to evaluate $\iint \overline{F} \cdot \overline{N} ds$ where	08
	0,	S S	
		$\overline{F} = 4xi + 3yj - 2zk$ and S is the surface bounded by	
		x = 0, y = 0, z = 0,2x + 2y + z = 4.	
Q.7	a)	Prove that every square matrix A can be uniquely expressed as sum	06
		of a hermitian and a skew hermitian matrix.	
	b)	Find work done in moving a particle from $A(1,0,1)$ to $B(2,1,2)$ along	06
		straight line AB in the force field $\overline{F} = x^2 i + (x - y)j + (y + z)k$.	
	c)	When do we use Poisson distribution? Fit a Poisson distribution to the	08
	c)	following data.	
		X:0 1 2 3 4	
		f : 123 59 14 3 1	