(3 Hours)

[Total Marks: 100

N.B

- 1) Question No.1 is compulsory.
- 2) Attempt any "Four" out of remaining "Six".
- 3) Assume suitable data wherever necessary.

Q1) Attempt any Four questions.

- Explain in brief different forms of PID controller.

 (D5]

 Explain in brief different forms of PID controller.

 (D5]

 Why correction factor is added to the required phase margin for the design of compensator.

 (D5)

 Explain the advantages of state space analysis over classical control system analysis. [D5]

 Explain the Z-transform for $f(t) = \sin wt$. u(t).

Q2)

- A) For a unity feedback system with a forward transfer function G(s) =value of gain "K" to operate the system with 15% overshoot.
- B) Explain the design procedure of Lag Compensator.

Q3)

A) Given the following open loop plant,

$$G(s) = \frac{200 \times 10^{-3}}{S(S+5)(S+10)}$$

Design a controller to yield a 15% overshoot and settling time of 2 seconds. Use phase variables form for the state space feedback.

B) Explain the different issues in implementing PID controller.

Q4)

- A) Design an observer for the plant $G(s) = \frac{1}{(s+1)(s+2)(s+5)}$ represented in cascade form. The closed loop performance is governed by the characteristic polynomial $S^3 + 120S^2 + 2500S + 50,000.$ [10]
- B) Develop flowchart for digital compensator defined by $G_C(z) = \frac{X(z)}{E(z)} = \frac{Z+2}{Z^2+2.5Z+5}$.

[TURN OVER

Q5)

