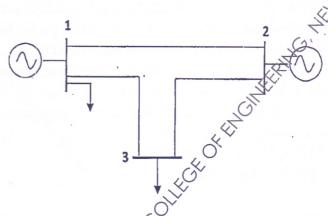
Q.P. Code: 29759

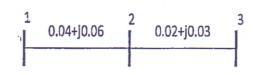

N.B.: (1) Question no 1 is compulsory.

(2) Answer any four question from the remaining five questions.

Answer the following

wer the following

(a) One line diagram of a three bus system is shown below. Series impedance of the line is j0.2 pu. Neglect series resistance and shunt admittance. Calculate Y_{Bus}.


- (b) Explain different types of buses in load flow analysis
- (c) What are the significance of load frequency control?
- (d) Write down the expression for FDLF analysis and explain
- For the network shown in the figure, obtain the complex bus bar voltage 2. (a) at bus 2 at the end offirst iteration. Use G.S method. Line impedances shown in figure below are in p.u. Given:

Bus 1 is stack bus with $V_1=l+j0$:

Complex power at Bus 2 is $S_2 = -5.96 + j1.46$.

Magnitude of Bus 3 voltage is |v₁|=1.02

Assume: $V_3^0 = 1.02 + j0$ and $V_2^0 = 1 + j0$

Q.P. Code: 29759

2

	(Explain different stability analysis and equal area criterion for transient stability analysis 	10
	3. ((a) Develop block diagram representation of load frequency control with primary ALFC loop of an isolated power system	10
	(b) Plot the dynamic response of load frequency controller with and without integral controller and explain.	9 10
	4. (10
	(b) A system consists of two plants connected by a tie line and a load is located at plant 2. When 100MW are transmitted from plant 1, a loss of 10MW takes place on the tie line. Determine the generation	10
		schedule at both the plants and power received by the load when λ for the system is Rs. 25 per MWhr and the incremental fuel costs (IC) are given by the equation:	
		(IC) are given by the equation: IC ₁ =0.03P ₁ + 17 Rs./ MWhr IC ₂ =0.06P ₂ + 19Rs./MWhr	v
	5. ((a) Write down the classification of power system states	. 10
		b) Derive the expression for the transmission loss using B-coefficients.	10
	6.	Write short note on any two	
		(i) cost and incremental cost curve of a generating unit (ii) Newton Raphson Load Flow analysis	20
1		(iii) Power system security	
	7. (a) Explain the contingency analysis in power system	10
	(b) Discuss the concept of power pool in detail.	10
		Discuss the concept of power pool in detail. E-Con. 10736-16.	
	TIN THE		•
, St) Y		
ROY	GI	E-Con. 10736-16.	
4º			
•			