SE- sem-M-012- COMPS-Am-UT

12/8/16

QP Code: 28662

DATE:

MAX. MARKS:100

TIME:

DURATION: 3 HRS.

Instructions:

- 1) Question No. 1 is compulsory.
- 2) Attempt any FOUR of the remaining.
- 3) Figures to the right indicate full marks.
- Q. 1) A) Find $L\{e^{3t}.sin^2t\}$

05

05

- B) Show that every square matrix can be uniquely expressed as the sum of a Symmetric and a skew–Symmetric matrix.
- C) Find a Z transform and the region of convergence of $f(k) = 2^k$, where $k \ge 0$. 05
- D) Find the Fourier series expansion of $f(x) = x^2$, where $-\pi \le x \le \pi$.
- Q. 2) A) Prove that the matrix, $A = \frac{1}{9} \begin{bmatrix} -8 & 4 & 1 \\ 1 & 4 & -8 \\ 4 & 7 & 4 \end{bmatrix}$ is orthogonal and

hence find its inverse.

06

B) Find
$$L^{-1}\left\{\frac{s+2}{(s^2+4s+5)^2}\right\}$$
.

06

C) Obtain the Fourier series expansion of $f(x) = \left(\frac{\pi - x}{2}\right)^2$ in the interval $0 \le x \le 2\pi$ and $f(x + 2\pi) = f(x)$.

Also deduce that (i) $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$

and (ii)
$$\frac{\pi^4}{90} = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \cdots$$
 08

Q. 3) A) Investigate for what values of λ and μ , the equations:

x + y + z = 6, x + 2y + 3z = 10 and $x + 2y + \lambda z = \mu$ have (i) no solution, (ii) a

unique solution and (iii) infinite number of solutions.

06

B) Obtain complex form of Fourier series for $f(x) = e^{ax}$ in $(-\pi, \pi)$ where a is not an integer.

- C) Solve $(D^2 D 2)y = 20.\sin(2t)$ with y(0) = 1 and y'(0) = 2.
- Q, 4) A) Find the Laplace transform of (t) = $\begin{cases} asinpt & 0 < t < \frac{\pi}{p} \\ 0 & \frac{\pi}{p} < t < \frac{2\pi}{p} \end{cases}$

and
$$f(t) = f\left(t + \frac{2\pi}{p}\right)$$
.

- B) Find the inverse Z transform of $F(z) = \frac{1}{(z-3)(z-2)}$, for |z| > 3.
- C) Find the inverse Laplace transform of (i) $\frac{e^{4-3s}}{(s+4)^{\frac{5}{2}}}$ (ii) $\tan^{-1}\left(\frac{2}{s}\right)$ 08
- Q. 5) A) Examine whether the following vectors are linearly independent or dependent:

$$(2, 1, 1), (1, 3, 1)$$
 and $(1, 2, -1)$

- B) Using the convolution theorem, prove that $L^{-1}\left[\frac{1}{s}\ln\left(\frac{s+a}{s+b}\right)\right] = \int_0^t \frac{[e^{-bu}-e^{-au}]}{u}du$
- C) Express the function $f(x) = \begin{cases} sinx & |x| < \pi \\ 0 & |x| > \pi \end{cases}$ Fourier Sine integral and

evaluate
$$\frac{1}{\pi} \int_0^\infty \frac{\sin wx.\sin \pi w}{1-w^2} dw$$
 08

- Q. 6) A) Find the Fourier transform of $f(x) = e^{-|x|}$.
 - B) Find $Z\{f(t)\}$ where $f(t) = \sin(\frac{k\pi}{4} + a)$, where $k \ge 0$.
 - C) Find the Fourier expansion of $f(x) = 2x x^2$, where $0 \le x \le 3$. Here f(x) is a periodic function having period 3.
- Q. 7) A) Reduce the matrix, $A = \begin{bmatrix} 1 & -1 & 3 & 6 \\ 1 & 3 & -3 & -4 \\ 5 & 3 & 3 & 11 \end{bmatrix}$ to its normal form. Find its rank. 06
 - B) Evaluate $\int_0^\infty \frac{\cos 4t \cos 3t}{t} dt$ using Laplace transform.
 - C) Show that the set of functions, $S = \left\{ \sin\left(\frac{\pi x}{2L}\right), \sin\left(\frac{3\pi x}{2L}\right), \sin\left(\frac{5\pi x}{2L}\right), \dots \right\}$ is an orthogonal set over (0, L).