BE/Sem-VIT old/Comp/DSIP

19/5/16

QP Code: 29774

	(3 Hours) [Total Marks :1	100
N.B.: (1) (2) (3)		
(a) (b) (c)	Low pass filter is a smoothing filter. Brightness discrimination in poor at low levels of illumination.	5 5 5 5 5
2. (a) (b)	Find the inverse z-transform of	10 10
	(i) $ROC = z > 3$ (ii) $ROC = z < 1$ (iii) $ROC = 2 < z < 3$	
3. (a) (b) (c)	Name and explain any three zero memory operations. Compare restoration and enhancement. Compare Lossless and Lossy Compression.	10 5 5
4. (a) (b)	Explain segmentation based on dicontinuities. Explain Edge Linking and Boundary detection via graph theoretic technique.	10 10
5. (a)	Compute the convolution of	10
	$x(n) = \{1, 1, 0, 1, 1\}$ and $h(n) = \{1, -2, -3, 4\}$ \uparrow [TURN OVER	

9/12/61

BELSON-WIOId/COMP/DSIP

QP Code: 29774

2

(b) Using 4-point FFT algorithm, calculate 2-D DFT of

10

$$f(x,y) = \begin{bmatrix} 0 & 0 & 3 & 1 \\ 1 & 1 & 2 & 2 \\ 2 & 2 & 1 & 3 \\ 1 & 1 & 2 & 4 \end{bmatrix}$$

- 6. (a) Write 8X8 Hadamard transform matrix and its signal flow graph. Using 10 the Butterfly diagram. Compute Hadamard transform for $x(n) = \{1, 2, 3, 4, 1, 2, 1, 2\}$
 - (b) What are the different types of redundancies in digital image? Explain in 10 detail, giving example of each.
- 7. Write short notes on (any four):-

20

- (i) Homomorphic filter
- (ii) Histogram Equalization
- (iii) 4, 8 and m connectivity of image pixels
- (iv) Classification of signals
- (v) K- L Transform