

ANJUMAN-I-ISLAM'S KALSEKAR TECHNICAL CAMPUS, NEW PANVEL School of Engineering & Technology

4 1	School of Engineering & Technology			
	DEPARTMENT OF MECHANICAL ENGINEERING			
100	CLASS:- TEME-1 SEM:- V			
SU	SUBJECT:- H.T DATE:- 2		6/09/2016	
DU	DURATION:- 60 min. MARKS:-		20	
-	CLASS TEST 02			
Q.0	1 Attempt any two: (08 Marks)	Marks	CO	
a)	Significance of dimensionless numbers used in heat transfer by convection.	04	CO5	
<u>p)</u>	Classify heat exchanger on various arrangements?	04	CO4	
c)	What is Fouling in heat Exchanger?	04	CO4	
2.0	2 Attempt any two: (12 Marks)	**************************************		
a)	Using dimensional analysis, derive an expression for Forced convection:- Nu=constant (Re) ^m (Pr) ⁿ	06	CO5	
b)	A copper bar 25mm diameter is cooled by air at 30° c which is flowing near the bar with velocity of 2.5m/s. If surface temperature of bar is not to exceed 85° c and resistivity of copper is $0.0175 \times 10^{-6} \Omega$ m. Calculate	06	CO5	
	i) Heat transfer coefficient from surface to air			
	ii) Permissible current intensity for bar.			
	Following relation must be used			
	For $10 < Re < 10^3$ Use Nu=0.44 (Re) ^{0.5} AND For $10^3 < Re < 2 \times 10^5$ Use Nu=0.22(Re) ^{0.6}			
	The thermo physical properties of air at 30° c are given as K=0.2673 W/m $^{\circ}$ c, v=16×10 ⁻⁶ m ² /s.			
<u>c)</u>	16.5 kg/s of the product at 650°c (C _p =3.55kJ/kgk) in a chemical plant, are to be used to heat 20.5kg/s of the incoming fluid from 100°c (C _p =4.2kJ/kgk). If the overall heat transfer coefficient is 0.95kw/m²k and the installed heat transfer surface is 44m², calculate the fluid outlet temperature for the counter flow and parallel flow arrangement.	06	CO4	