

ANJUMAN-I-ISLAM'S

KALSEKAR TECHNICAL CAMPUS, NEW PANVEL School of Engineering & Technology

& Na	tional Integration			
	DEPARTMENT OF MECHANICAL ENGINEERING	G		
CLASS:- S.E.M.E -1 & S.E.M.E -2 SEM:- III				
SUBJECT:- THERMODYNAMICS DATE:- 24		1/10/2016		
DURATION:- 60 min. MARKS:- 3		20		
	CLASS TEST 02			
Q.0	1 Attempt any two: (08 Marks)		Marks	со
a)	Define Joule-Thompson coefficient and state its significance.		04	CO-4
b)	State Maxwell relations.			CO-4
c)	efine (i) Sensible heat of water (ii) Latent heat of vapourisation (iii) Dry saturated steam (iv) uperheated steam.		04	CO-10
Q.0	2 Attempt any two: (12 Marks)			
a)	where it is condensed to saturated liquid water. The pump feeds back the water into the boiler		06	CO-9
b)	In an air standard diesel cycle, compression ratio is 15. Pressure and temperature at the s compression stroke is 100 KPa, 300 K. For a peak temperature of 1600 K, determine efficiency and mean effective pressure.		06	CO-6
c)	Show that efficiency of dual cycle is given by, $\eta_{dual} = 1 - \frac{1}{r_c^{\gamma-1}} \left[\frac{r_p. \ \rho^{\gamma-1} - 1}{(r_p-1) + \gamma. \ r_p(\rho-1)} \right]$		06	CO-6