SE-Sem-IV - Computers- DIZ - AM-A

Q. P. Code : 09881

15/57/17

(3 Hours)

[Total marks : 100

OLD COURSE

N.B. :- 1) Question No. 1 is compulsory.
2) Attempt any four questions from the remaining six questions.
3) Figures to the right indicate full marks.
(Q.1 a) If
$$A = \begin{pmatrix} -1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & -2 \end{pmatrix}$$
, find the eigen values of $A^3 + 5A + 8I$.
(b) Obtain the dual of the following L.P.P.:
(c) Minimize $Z = x_1 - 3 x_2 - 2x_3$
subject to
 $3x_1 - x_2 + 2x_3 \leq 7$
 $2x_1 - 4x_2 \geq 12$
 $-4x_1 + 3x_2 + 8x_3 = 10$
 $x_1, x_2 \geq 0$, x_3 is unrestricted.
(c) Prove that $f(z) = (x^3 - 3xy^2 + 2xy) + i(3x^2y - x^2 + y^2 - y^3)$ is
analytic and find $f'(z)$ and $f(z)$ in terms of z.
(d) Evaluate $\int_C \frac{e^{2Z}}{(z-1)(z-2)} dz$, where C is the circle $|z| = 3$.
(f) Prove that $f(z) = \frac{e^{2Z}}{1 - 1} dz$.
(g.2 a) Find the characteristic equation of the matrix A given below and hence, the matrix of represented by
 $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$ where
 $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$.
(b) Solve the following L.P.P. by simplex method:
 $Maximize Z = 3x_1 + 2x_2$
 $subject to$
 $x_1 + x_2 \leq 4$
 $x_1 - x_2 \leq 2$
 $x_1, x_2 \geq 0$
(c) Evaluate $\int_0^{2\pi} \frac{d\theta}{5+3\sin\theta}$.
(d) TURN OVER
4E2IDEFB9DODC36590CFF89B37BER6DC7

```
Q. 3 a) Show that the following function
```

$$f(z) = \begin{cases} \frac{x^2 y^5 (x+iy)}{x^4 + y^{10}}, & z \neq 0\\ 0 & z = 0 \end{cases}$$

is not analytic at the origin although Cauchy-Riemann equations are satisfied.

b) If $A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$, find the characteristic roots and characteristic vectors of $A^3 + I$.

c) Using Penalty (Big M or Charne's) solve the following L.P.P.:

 $\begin{array}{l} Maximize \ Z = 3x_1 - x_2\\ subject \ to\\ 2x_1 + x_2 \ \leq \ 2\\ x_1 + \ 3x_2 \ \geq \ 3\\ x_2 \le \ 4\\ x_1, \ x_2 \ \geq \ 0 \end{array}$

a)

b) If
$$A = \begin{pmatrix} \pi & \pi/4 \\ 0 & \pi/2 \end{pmatrix}$$
, find $\cos A$.

c) Use dual simplex method to solve the following L.P.P.:

Find p if $f(z) = r^2 \cos 2\theta + i r^2 \sin p\theta$ is analytic.

Maximize
$$Z = -3x_1 - 2x_2$$

subject to
 $x_1 + x_2 \ge 1$
 $x_1 + x_2 \le 7$
 $x_1 + 2x_2 \le 10$
 $x_2 \le 3$
 $x_1, x_2 \ge 0$

Q.5 a) Find Laurent's series which represents the function 06
$$f(z) = \frac{2}{(z-1)(z-2)} \text{ when } (i) |z| < 1, (ii) 1 < |z| < 2.$$

b) Find an analytic function whose imaginary part is $e^{-x}(y \cos y - x \sin y)$. 06

c) If
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & 0 \\ 1/2 & 2 \end{pmatrix}$, prove that both A and B are not diagonalizable but AB is diagonalizable.

4E21DEFB9D6DC36590CFF89B87BE6BC7

06

06

08

06

06

08

TURN OVER

Q. P. Code : 09881

Q. 6	a)	Find the residues of $f(z) = \frac{\sin \pi z}{(z-1)^2(z-2)}$ at its poles.	06
	b)	Find the image of the rectangular region bounded by $x = 0$, $x = 3$, $y = 0$, $y = 2$ under the transformation $w = z + (1 + i)$.	06
	c)	Using the method of Lagrangian multipliers solve the following non-linear programming problem:	08
		Maximize $Z = x_1^2 + x_2^2 + x_3^2$ subject to $x_1 + x_2 + 3x_3 = 2$ $5x_1 + 2x_2 + x_3 = 5$ $x_1, x_2, x_3 \ge 0$	
Q. 7	a)	Find the bilinear transformation which maps the points 2, i , -2 onto the points 1, i , -1 .	06
	b)	Use Kuhn-Tucker method to solve the following N.L.P.P.:	06
		Maximize $Z = 10x_1 + 4x_2 - 2x_1^2 - x_2^2$ subject to $2x_1 + x_2 \le 5$ $x_1, x_2 \ge 0$	
	c)	Evaluate $\int_C \frac{z+6}{z^2-4} dz$ where C is the circle	08
		(<i>i</i>) $ z = 1$, (<i>ii</i>) $ z - 2 = 1$, (<i>iii</i>) $ z + 2 = 1$.	

4E21DEFB9D6DC36590CFF89B87BE6BC7