		School of .	Architecture
ANUMAN FISLAM'S	School of Eng	íneering 8	& Technology
AKTC KALSEKAR TECHNICAL CAMPUS		School	of Pharmacy
Knowledge Resource & Re	elay Centre (KI	RRC)	
AIKTC/KRRC/SoET/ACKN/QUES/2017-18/	Da	Date:	
School: <u>SoET-CBSGS</u> Branch: <u>ELI</u>	ECT. ENGG. SE	M: <u>V</u>	u
То,			
Exam Controller,			
AIKTC, New Panvel.			

Dear Sir/Madam,

Received with thanks the following Semester/Unit Test-I/Unit Test-II (Reg./ATKT) question papers from your exam cell:

Sr.	Subject Name	Subject Code	For	mat	No. of
No.	14 33 11 39 11 11 11 12 12 13 12 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15		SC	HC	Copies
1	Power System Operation and Control	EEC701		\checkmark	
2	High Voltage DC Transmission	EEC702		\checkmark	
3	Electrical Machine Design	EEC703		1	
4	Control System – II	EEC704		\checkmark	
5	Elective HVE	EEE70X		/	
6					

Note: SC - Softcopy, HC - Hardcopy

(Shaheen Ansari) Librarian, AIKTC

(~)		Q.P. Code :22963
	Duration: 3 Hours	Total Marks: 80
NOTE		Section 2. 19
1.Ques	stion number 1 is compulsory	
2.Atte	mpt any three from the remaining	
3.Figu	res to right indicates full marks	
4.Assu	me suitable data if necessary and mention the same	
	and mention me same	
1.	Attempt any four of the following :-	20
a)	In turbine speed governor system $\Delta Pc=0,\Delta f$ is uni	20 t step, R=2.5, 05
	Ksg=1, 1sg=0.4, Determine ΔY_F after 0.4 s	r sup, R-2.5, 05
b)	For following Yaus fill in the blanks all va = 0	05
	[-13 10 5 -]	
	$\begin{bmatrix} -13 & 10 & 5 & -\\ - & -18 & 10 & -\\ - & - & -13 & - \end{bmatrix}$	
	J = -13	
c)	Define power system stability and classify it on the of disturbance	e basis of nature 05
d)	State whether statement is 'true' or 'false' and just "The equal area criterion gives only qualitative ans stability"	ify your answer 05 swer to system
e)	Write difference between GS and NR, methods of studies	load flow 05
2.		20
a)	Explain YBUS formation by singular transformation	20 10
b) 🚽	A simple two-bus power system is shown in fig	10
1	y (Line)=(0.305-2j) p.u	Q#2

0.5+0.25 j (Load)

10

 $|V_2|=1.0$ p.u (Bus 2 is PV bus). Obtain δ_2 and Q_{g2} at the end of first iteration of N-R method.

20 The fuel cost functions for three thermal plant in Rs/h are given 10 by

by $C_1=500+5.3P_1+0.004P_1^2$ $C_2=400+5.5P_2+0.006P_2^2$ $C_3=200+5.8P_3+0.009P_3^2$ Where P₁, P₂ and P₃ are in MW. The total load P_D is 800 MW. Neglecting transmission line losses and generator limits, find the optimal dispatch and the total cost in Rs/h Derive formula for Bmn coefficients in transmission loss formula

b)

Page 1 of 2

6F9211178067637865353A2FB8B6C0B7

a)

3.

Q.P. Code :22963

4.		20
a)	Find the steady state power limit of a system consisting of a generator equivalent reactance 0.5 p.u connected to an infinite bus through a series reactance of 1.0 p.u. The terminal voltage of the generator is held at 1.2 p.u and the voltage of the infinite bus is 1 p.u	10
b)	A syncronous generator having H= 8 MJ/MVA is connected to an infinite bus and supplying power of 1 pu with initial power angle as 25 degree. Assume three phase fault ocurring at t=0 and cleared at t=0.2 sec. The power equations expressed in pu are as under	10
	Power transfer in pre-fault condition=2.5 sin δ Power transfer in during-fault condition=0.6 sin δ Power transfer in post-fault condition=1.5 sin δ . The system frequency is 50 Hz, use step by step method to solve the swing equation with step size 0.05 till the fault is cleared	
5.		20
a)	Draw turbine speed governor system and explain briefly 4 major parts in it	10
b)	Explain dynamic response of change in frequency for step change in load of an isolated power system. How dynamic response changes with integral control action	10
6.	Write short notes on (any two)	20
a)	power pool and its advantages and disadvantages	10
b)	Surge impedance and surge impedance loading	10
c)	AGC in restructured power system	10

6F9211178067637865353A2FB8B6C0B7

G) BE-sem-VII - Ela	ectrical - CBSQS -	- HNDCT	17/5/18
80			Q.P. Code : 25945	
	(3	3 Hours)	[Total Marks	: 80
	 N.B.: (1) Question No.1 is com (2) Attempt any three from (3) Figures to the right in 	n remaining.		
	 Solve any four : (a) Draw different types o (b) Draw the equivalent ci (c) Explain IPC scheme o (d) Give classification of f (e) State causes and conset 	rcuit of HVDCT line. f firing of HVDC Conv faults in HVDCT.		20
	2. (a) For a bridge converter with gr $\cos \phi$	id control and overlap $I \equiv \cos \alpha - \frac{R_c \cdot I_d}{V_{ds}}$	less than 60° Prove that	10
	(b) Explain single commutation w	ith neat diagram and we	aveform.	10
	 (a) Calculate the secondary line vo rectifier to provide de voltage the effective reactance? when t 	of 120KV. Assume $\alpha =$	30° and $\mu = 15^{\circ}$. What is	10
	(b) Discuss desired features of characteristic			10
	4. (a) Explain with neat diagrams and	construction of the second	ple of 12 pulse converter.	10
	(b) Explain the importance of current	ent margin.		10
	5. (a) Write a note on 'Ground return(b) Write a note on 'Power reversa			10 10

6. (a) Explain over voltage and over current protection of HVDC.(b) Write a note on 'Harmonics and filters in HVDC'.

2F4A7267688055B483146CAF055B48D2

_

10 10

BE-Sem-VII - OBSGS- Steelmical - EMD

(3Hrs)

0

Q.P.Code: 37326

[10]

[10]

Marks: 80

NB.	12 2 3	Question no: 1 is Compulsory Solve any three questions out of remaining.	
	(2) (3)	Assume suitable data if required and Specify the same.	
1. Ans	swer t	he following: -	
a. Exp	olain d	ifferent types of magnetic material.	[5]
		esign modification in stator of energy efficient motor.	[5]
		ffect of dispersion coefficient on maximum power factor.	[5]
100 C		indow space factor?	[5]
2a Wr	ite sho	ort note on cross over winding and disc winding	[10]
		e output equation of a three phase transformer.	[10]
3a De	rive th	e equation for leakage reactance calculation for a two winding core type tr	ansformer.
			[10]
3 b. De	evelop	output equation for induction motor in terms of main dimensions.	[10]
contai	ning 9	W, 3 phase, 6 pole, 50HZ, 220 V, star connected induction motor has 55 conductors. Calculate value of bar and end ring current. The number of rot efficiency of 0.86 and power factor 0.85. The rotor mmf may be assumed	or bars is 64. The
stator			[10]
		expression for magnetizing current per phase of 3 phase induction motor.	
			[10]

5a 250KVA, 6600/400V, 3 phase, core type transformer has a total loss of 4800 W at full load. The transformer tank is 1.25m in height and 1m x 0.5m in plan. Design a suitable scheme for tubes if the average temperature rise is to be limited to 35° C. The diameter of tube is 50mm and is spaced 75mm from each other. The average height of tube is 1.05m. Specific heat dissipation due to radiation and convection is 6 and 6.5 W/m²- ^oC. Assume that convection is improved by 35% due to provision of tubes. [10]

5b. Discuss the various mechanical forces developed in transformer with sketches. Explain how they are taken care while fabrication. [10]

6a. Discuss the designing of end ring in the induction motor.

6b Discuss rules of selecting rotor slots in induction motor

361A37300AC6F639BFBB71DBD25FBAAC

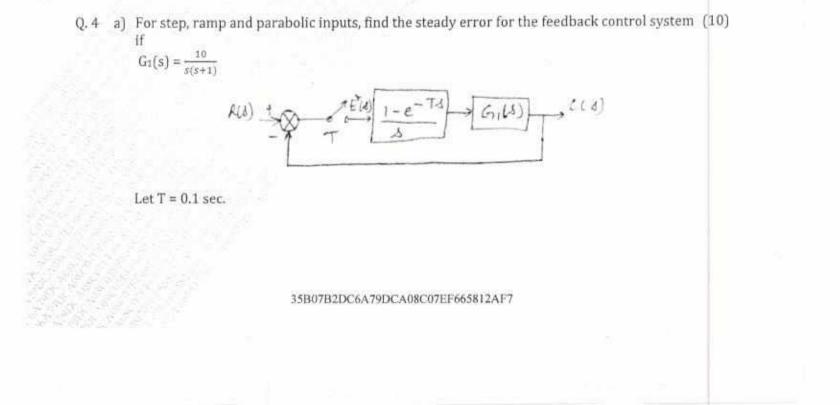
BE-sem-VII-CBSQS- Dectrical - CS-I

Q.P. Code :27291

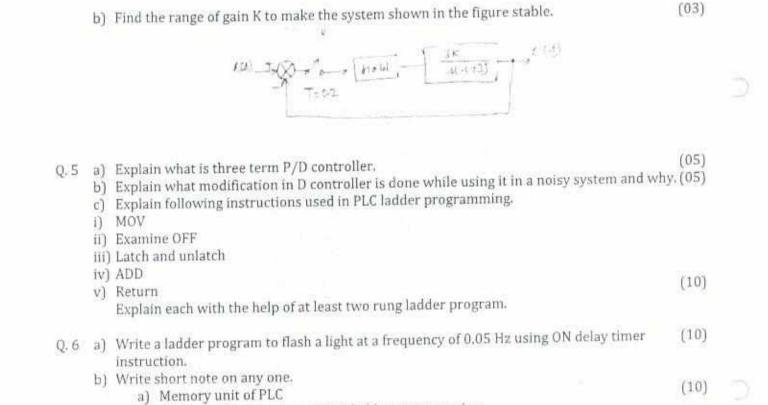
[Time: Three Hours]

Q.1

[Marks:80]


29/5

Please check whether you have got the right question paper. 1. Q. No 1 is compulsory. Attempt any three questions from rest. N.B: 2. Make suitable assumption wherever applicable. 3. Use of graph paper or semi log paper is mandatory wherever applicable. 4. Write legible. Attempt any four. a) Explain what is lag, lead and lag-lead compensators. b) Why and how much compensation is required in phase margin while designing lag compensator using frequency response. c) Describe the configuration of an observer. Before that answer what is an observer. d) Explain briefly the phase variable form of state-space representation. e) Explain stability in digital control system. Q. 2 a) For a unity feedback system with open loop transfer function $G(s) = \frac{k}{s(s+7)}$ is operating (10)with 15 % overshoot and 2sec setting time. Using frequency response technique, design a compensator for Ky = 50 with the phase margin frequency and phase margin remaining approximately same as in the uncompensated system. (10)b) Design a linear state feedback controller to give 20% overshoot and a setting time of 2 second for a plant. $G(s) = \frac{s+6}{(s+9)(s+8)(s+7)}$ that is represented in cascade form. Use transformation matrix. Q.3 a) Explain how steady state error design via integral control is implemented in design via (10)


	state space model.	
b)	Consider the plant G(s) = $\frac{s+2}{(s+5)(s+9)}$	(10
	Design an absorber for $\xi = 0.6$ and $w = 120$ using observer canonicals form only	

Design an observer for $\xi = 0.6$ and $w_n = 120$ using observer canonicals form only.

(20)

Q.P. Code :27291

b) Arithmatic instructions of PLC ladder programmingc) Counter instructions in PLC ladder programming

35B07B2DC6A79DCA08C07EF665812AF7

		BE-sem-VII- Electrical - CB:	QP CODE: 37839	
			QI CODE. DIGD	
		(3 Hours)	[°] Total Marks: 80)
NB.	(1)	Question no: 1 is Compulsory.	х.,	
	(2)	Solve any three questions out of remaining.	5	
	(3)	Assume suitable data if required and Specify	/ the same.	
(i (i (i 2. a) of op b)	i) ii) v) Drav peratic Wha	ne and explain the following terms Statical time lag Formative time lag Over voltage and impulse ratio Total time lag v basic circuit of radio interference measurement in and its application in high voltage testing labo t is principle of operation of Resonant Transformers?	ratories. nsformer? How is it	(10) (10)
		is partial discharge? Differentiate between interr	nal and external	(10)
3. a)	What discha	irges.		(10)
3. a)	What discha Expla	arges. In how sphere gas measurement can be used to	measure the peak	(10)
3. a) b) 4. a) (i (ii	What discha Expla value With) S i) (irges.	measure the peak ment.	

÷

G.

- (ii) Schematic diagram (Rotating Vane type)
- (iii) Principle of operation
- (iv) Applications & Limitations
- 6. a) Describe various tests that are carried on 'Transformers 'as per IS codes.
 - b) What do you understand by 'intrinsic strength' of a solid dielectric? How does breakdown occur due to electron in a solid dielectric?

(10)(10)

 \mathbf{H}

7D4AB4BCBF238DAD14A13254DEBA6573