School of Architecture

School of Engineering & Technology

ANRIMAN-PISLAM'S

KALSEKAR TECHNICAL CAMPUS

School of Pharmacy

ATIVE TE	ACHING E	法财富生产在外下	LEATHING	
	STREET, DELEVANCE AL	Colored and All II.		

Knowledge Resource & Relay	Centre (KRRC)	_
AIKTC/KRRC/SoET/ACKN/QUES/2017-18/	Date:	
School: <u>SoET-CBSGS</u> Branch: <u>EXTC</u>	SEM: <u>IV</u>	
To, Exam Controller,		
AIKTC, New Panvel.		

Dear Sir/Madam,

INNO

Received with thanks the following Semester/Unit Test-I/Unit Test-II (Reg./ATKT) question papers from your exam cell:

Sr.	Subject Name	Subject Code	For	mat	No. of
No.		Column These Sections of	SC	HC	Copies
1	Applied Mathematics- IV	ETS401		1	
2	Analog Electronics-Ii	ETC402		1	
3	Microprocessors & Peripherals	ETC403		1	
4	Wave Theory And Propagation	ETC404		1	
5	Signals And Systems	ETC405		5	
6	Control Systems	ETC406		\checkmark	

Note: SC - Softcopy, HC - Hardcopy

(Shaheen Ansari) Librarian, AIKTC

SE-Sem-IN-CASAS- FXTC/DE - AM-IN

O. P. Code: 38142

[Total Marks: 80]

(3 Hours)

N.B. : 1) Question No. 1 is Compulsory.

66

2) Answer any THREE questions from Q.2 to Q.6.

3) Figures to the right indicate full marks.

- Q.1 (a) Verify Cauchy-Schwartz inequality for u= (2, 1,-3) v= (3, 4,-2). (5) Also find angle between u & v.
 - (b) If $A = \begin{bmatrix} 2 & 0 & 0 \\ 5 & -1 & 0 \\ 2 & 3 & 3 \end{bmatrix}$ find Eigen values of $A^2 + 6A^{-1} 3I$. (5)

(c) Evaluate
$$\int_{c} \frac{z^{3}+2Z}{(Z-1)^{2}} dZ$$
 when C is $|Z| = 2$. (5)

- (d) Find the extremals of $\int_{x_1}^{x_2} (x + y')y' dx$. (5)
- Q.2 (a) Verify Cayley-Hamilton theorem & hence find A^{-1} , where A =(6) $\begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 2 & 1 & 1 \end{bmatrix}.$

 - (b) Find the extremal of $\int_{x_1}^{x_2} (2xy y''^2) dx$. (6)

(c) Obtain Laurent's series expansion of $f(z) = \frac{Z+2}{(Z-3)(Z-4)}$ about (8)z = 0.

Q.3 (a) Evaluate
$$\int_0^{1+i} z^2 dz$$
 along the parabola $x = y^2$. (6)

Show that $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 2 \end{bmatrix}$ is derogatory & find its minimal (b) (6)polynomial.

(c) Reduce the following quadratic form into canonical form & (8)hence find it's rank, index, signature &value class $x^2 + 2y^2 + 3z^2 + 2yz + 2xy - 2zx.$

Page 1 of 2

2F4A7267688055B483146CAF05CA96E9

Q. P. Code: 38142

(8)

Q.4 (a) Find unit vector orthogonal to both u = (-6,4,2) v = (3,1,5). (6)

(b) Evaluate
$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx.$$
 (6)

(c) Show that matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ is diagonalizable. Also find its diagonal and transforming matrix.

Q.5 (a) Using Rayleigh-Ritz method find solution for the extremal of the (6) functional $\int_0^1 (2xy + y^2 - (y')^2) dx$ given y(0) = y(1) = 0.

- (b) Find an orthonormal basis for the subspace of IR³ using Gram (6) Schmidt process where s = {(1,0,0), (3,7,-2), (0,4,1)}
- (c) Find the curve C of given length 'l' which encloses a maximum (8) area.

Q.6 (a) If
$$A = \begin{bmatrix} \pi & \frac{\pi}{4} \\ 0 & \frac{\pi}{2} \end{bmatrix}$$
 find $\cos A$.

 $\frac{1}{2}$ find $\cos A$. (6)

(b) Check whether the set of all pairs of real numbers of the form
 (6)
 (1, x) with operations

(1,a) + (1,b) = (1,a+b) and k(1,a) = (1,ka) is a vector space, where k is real number.

(c) Find the singular value decomposition of $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$. (8)

Page 2 of 2

2F4A7267688055B483146CAF05CA96E9

SE-sem-IV - CBSQU- EXTC - AE-II

QP CODE : 22624

(3 Hours)

Marks: 80

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Solve any three questions from the remaining five
 - (3) Figures to the right indicate full marks
 - (4) Assume suitable data if necessary and mention the same in answer sheet.
- Q.1 Attempt any 5 questions

[20]

- a) Compare series and shunt regulator.b) What are the major limitation of class P nower
- b) What are the major limitation of class B power amplifier and how to overcome the same?
- c) What is the need of dual power supply biasing for differential amplifier?
- d) Which type of biasing technique is used to bias Integrated Circuit
- e) Draw and explain frequency response of BJT CE amplifier.
- f) Explain line regulation and load regulation of voltage regulator. Draw the line and load regulation characteristics of ideal and practical voltage regulator.
- Q.2 a) For the circuit shown in Fig. 2a, the transistor parameters are [10] $V_{BE(on)} = 0.7V$, $\beta=100$, $C_{\pi} = 2$ pF, $C\mu = 0.2$ pF. Find lower cutoff frequency and midband gain.

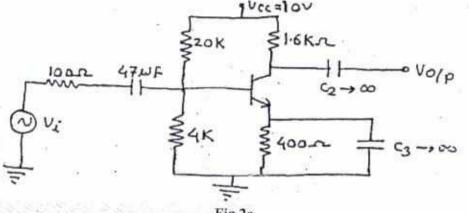


Fig.2a

- b) Determine unity gain bandwidth of N channel MOSFET with parameters [10] K_n = 0.25 mA/V², V_{TN} = 1V, λ=0, C_{gd} = 0.04 pF, C_{gs} = 0.2 pF, V_{GS} = 3V. If a 10 kΩ load is connected to the output between drain and source determine the Miller capacitance and cut-off frequency.
- Q.3 a) Draw circuit diagram of MOSFET based differential amplifier and derive [10] the expression for differential gain, common mode gain and CMRR.
 - b) Determine overall input resistance and output resistance of the circuit as [10] shown below in Fig. 3b. For both the transistors β =120

B87329C60B9BC06C8E5329E3EB27B6F8

QP CODE : 22624

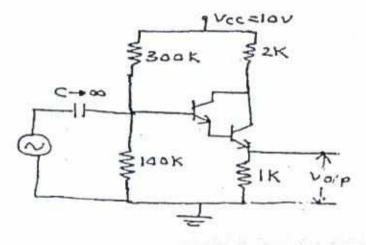


Fig. 3b

- Q.4 a) Explain the working of two transistor (BJT) current source with the help of [10] necessary current relationships. Also explain the effect of finite output resistance on current source performance and techniques to improve the same.
 - b) Draw the circuit of V_{BE} multiplier biased class AB amplifier and explain the [5] working and advantages of V_{BE} multiplier biased class AB amplifier.
 - c) What are the ideal characteristics of opamp and also explain the effect of [5] high frequency on OPAMP gain and phase.
- Q.5 a) Draw the circuit diagram of transformer coupled class A power amplifier. [10] Also draw ac and dc loadlines for the same. Derive the expression for its power conversion efficiency.
 - b) Explain the working of basic differentiator with the help of input and output [10] waveforms. Also derive the expression for the output voltage. What are the limitations of basic differentiator and how to overcome these limitations.
- Q.6 Short notes on: (Attempt any four)
 - a) Zener voltage regulator
 - b) Power MOSFET
 - c) Class AB power amplifier
 - d) High pass and Low pass filter using OPAMP
 - e) High Frequency hybrid pi model of BJT

2

B87329C60B9BC06C8E5329E3EB27B6F8

[20]

23/5/B

SE-sem-IV-CBSQS-EXTC-MPRP

Q.P. CODE: 37024

		(3 Hours) Max Marks: 8	80
N	ote:	 Question No. 1 is compulsory. Out of remaining questions, attempt any three questions. Assume suitable additional data if required. Figures in brackets on the right hand side indicate full marks. 	In the second
1.	(A)	Explain memory segmentation of 8086 and its advantages.	(10)
	(B)	Explain input output control word format of 8255.	(10)
		Write control word of 8255 to initialize port A as input port, port B and C as output port, Group A and B in mode 0.	
2.	(A)	Explain addressing modes of 8086 microprocessor.	(10)
	(B)	Explain maximum mode of 8086 microprocessor. Draw timing diagram for read operation in minimum mode.	(10)
3.	(A)	Draw and explain interfacing of DAC 0808 with 8086 microprocessor using 8255. Write a program to generate square wave.	(10)
	(B)	Draw and Explain interfacing of Math co-processor with 8086.	(10)
4.	(A)	Describe in brief and compare architecture of 80286 and 80486 microprocessor.	(10)
	(B)	Explain how 32 KB EPROM can be interfaced with 8086 that operates at frequency of 10 MHz using 4 KB device.	(10)
5.	(A)	Explain 8086 interrupt structure and its method of interfacing with 8086 microprocessors with suitable example.	(10)
	(B)	Write a program to set up 8253 as square wave generator, assume suitable data.	(10)
6.	(A)	Explain in brief HOLD, HLDA, TRAP, RESET IN, RD, WR, SID, SOD pins of 8085.	(10)
	(B)	Discuss the functions of general purpose registers of 8086. Explain the function of each register and instruction support for these function.	(10)

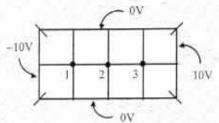
Page 1 of 1

361A37300AC6F639BFBB71DBD2BE4A61

SE-sem-IV - GBSCUS - Electrings & TeleCom - WTP (BATC) Q.P. CODE: 36047

[Time: 3 Hours]

[Total Marks: 80]

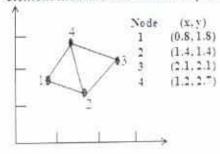

29/5/10

Note the following instructions.

- 1. Question No. 1 is compulsory.
- 2. Attempt any three out of the remaining five
- 3. Draw neat diagrams wherever necessary.
- 4. Assume data, if missing, with justification
- 5. Figures to the Right indicate full marks.

Q1. Attempt ANY FOUR out of the FIVE

- (a) Define parallel polarization and perpendicular polarization with the help [05] of a diagram.
- (b) Find the charge in the volume defined by $0 \le x \le 1m$, $0 \le y \le 1m$, if the [05] $pv = 120x^2y \ \mu C/m^3$.
- (c) Explain the term super refraction with a neat labeled diagram. [05]
- (d) Determine the potential at the free nodes in the potential system of the following figure using Finite Difference Method (Band Matrix Method).



- (c) State the Maxwell's Equations in free space in terms of E and H only. [05] Explain its significance in wave motion.
- Q2. (a) Derive boundary conditions for electric field for a dielectric-dielectric [05] interface stating its significance.
 - (b) In free space (z ≤ 0), a plane wave with Hi = 10 cos(10⁸t βz)a_x mA/m is [10] incident normally on a lossless medium (ε = 2εο, μ = 8μο) in the region z ≥ 0. Determine the reflected wave Hr, Er and the transmitted wave Ht, Et.
 - (c) Define Polarization of a wave. State the conditions to achieve Linear polarization. [2+3]
- Q3. (a) A 300MHz wave is propagating through fresh water. Assuming a lossless [8+2] medium $\mu_r = 1$, $\epsilon_r = 78$ (at 300MHz). Find the phase constant, the velocity of propagation, the wavelength and the intrinsic impedance. If $E_0 = 0.1$ V/m, also find E_x and H_y .
 - (b) Derive an expression for the Maximum Usable Frequency (MUF) in terms of the skip distance and virtual height.
 - (c) A VHF communication is to be established with a 35W transmitter at 90MHz. Determine the distance up to which LOS communication may be possible if the height of the transmitting and receiving antennae are 40mts and 25mts respectively.

Page 1 of 2

35B07B2DC6A79DCA08C07EF665CF9DA1

- Q4. (a) Obtain reflection coefficient and transmission coefficient of [8+2] perpendicularly polarized wave incident on a dielectric-dielectric boundary with oblique incidence. Define the Brewster angle for this case.
 - (b) Consider the two element mesh shown in the fig below. Using the finite [10] element method, determine the potentials within the mesh.

- Q5. (a) What is the loss tangent of a material? How does it classify materials?
 [2+3]

 (b) Derive Helmholtz equations.
 [5]
 - (c) A point charge $Q_1 = 10\mu$ C, is located at P₁(1, 2, 3) in free space, while [5+5] $Q_2 = -5\mu$ C is at P₂(1, 2, 10).

(a) Find the vector force exerted on Q2 by Q1.

(b) Find the coordinates of P3 at which a point charge Q3 experiences no force.

- Q6. (a) A 5nC point charge is located at A(2, -1, -3) in free space. Find E, at the [05] origin.
 - (b) Define skin depth. Most microwave ovens operate at 2.45GHz. Assume [05] $\sigma = 1.1 \ge 10^6$ mho/m and $\mu_t = 600$ for the stainless steel interior. Find the depth of penetration.
 - (c) Explain Ducting. State the conditions under which a duct is formed. [05]
 - (d) With respect to the application of Electromagnetic Waves, explain the [05] working of an Electromagnetic Pump.

Page 2 of 2

SE-Sem-IV- CBSGS-EXTC-SS

O. P. Code: 39055

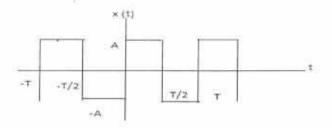
4/6/18

20

(3 Hours)

[Total Marks: 80]

N.B.:


- 1. Question No.1 is compulsory.
- 2. Attempt any three questions out of the remaining five.
- 3. Assume suitable data wherever necessary.
- Q1 a) State and prove time shifting property of Z-transform
 - b) Determine the even and odd part of the following time signals.
 i) x (t) = 3 + 2t + 5t²
 ii) x(t) = e^t
 - c) Explain in brief ROC (Region of Convergence) condition for Laplace transform.
 - d) Sketch signal e^{-5t} u(t) and determine power and energy of signal.
 - e) For the unit step response of continuous time signal, determine the transfer function of the system: s(t) = u(t) + e^{-2t} u(t)

Q2. a) Define the following Continuous Time signals:

- i) Deterministic and Non Deterministic Signals
- ii) Periodic and Non periodic Signal
- iii) Causal and Non causal Signal
- iv) Even and odd Signal
- b) Determine the Fourier series of the following signal:

10

10

E60CFC45F2172FDF02888C8F240D68ED

Q. P.	Code	: 390	55
Q3. a) Define and prove the following properties of Laplace transforms:		10	
i) Time and frequency shifting			
ii) Amplitude Scaling and Linearity			
b) Find impulse response and step response of continuous time systems governed by		10	
Following transfer functions.			
$H(s) = \frac{s+3}{s^2 + 6s + 8}$			
Q4. a) Determine the Laplace transform of the following signals: i) $X(t) = sin\Omega 0t u(t)$ ii) $X(t) = cos\Omega 0t u(t)$		5	
b) Explain Gibbs Phenomenon in detail.		5	
c) A stable system has input x (t) and output y (t). Determine transfer function and Impulse response h (t) by using Laplace transform, $x (t) = e^{-2t} u(t)$; $y(t) = -2 e^{-t} u(t) + 2 e^{-3t} u(t)$		10	0
Q5. a) An LTI system is described by the equation:		10	
y (n) = x(n) + 0.8 x(n-1) + 0.8 x(n-2) - 0.49 y (n-2), determine the transfer function of			
The system and also sketch the poles and zeros on the z-plane.			
b) Determine the Z- transform and ROC of the given discrete time signal: $x(n) = 0.5^{n} u(n)$		5	
c) Why linear Convolution is important in signals and System? Differentiate linear Convolution with Circular Convolution.		5	
Q6. a) Compute the convolution $y(n) = x(n) * h(n)$ using tabulation method		10	
Where x (n) = { 1, 1, 0, 1, 1 } and h (n) = { 1, -2, -3, 4 }			
b) Determine the impulse response h (n) for the system described by		10	
Second order difference Equation, $y(n) - 4y(n-1) + 4y(n-2) = x(n-1)$			

Page 2 of 2

E60CFC45F2172FDF02888C8F240D68ED

SE- Sem-IN- OBSGS EXTC-CS

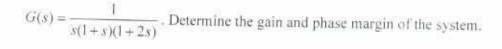
Q. P. Code: 36810

8/6/18

			1
		(3 Hours) Max Marks: 80	
N	iote:	1. Question No. 1 is compulsory.	
		2. Out of remaining questions, attempt any three questions.	
		3. Assume suitable additional data if required.	15
		4. Figures in brackets on the right hand side indicate full marks.	
1.	(A)	Explain Mason's Gain Formula.	
	(B)	Differentiate between Open Loop and Closed Loop Control System	
	(C)	Explain the concept of relative stability.	
1.4	(D)	Explain the concept of Neuro-Fuzzy adaptive control system.	
2.	(A)	The open-loop transfer function of a unity feedback system is -	
		$G(s) = \frac{20}{s(1+4s)(1+s)}$	
		Evaluate the static error coefficients for the system. Obtain the steady-state error of the system	1
		when subjected to an input given by the polynomial -	
		$r(t) = 2 + 4t + \frac{t^2}{2}$	
		$r(t) = 2 + 4t + \frac{1}{2}$	
	(B)	Test the stability of the system represented by following characteristic equations.	
		i) $s^{6} + 2s^{5} + 8s^{4} + 12s^{3} + 20s^{2} + 16s + 16 = 0$.	
		ii) $s^{s} + 2s^{4} + 3s^{3} + 6s^{2} + 2s + 1 = 0$.	
3.	(A)	For the given transfer function, find Tp, % MP, Ts, and Tr.	
		$G(s) = \frac{2s}{s^2 + 6s + 25}$	
	2442		
	(B)	Sketch the root locus for the below given System.	
		$G(s)H(s) = \frac{K}{s(s+3)(s+5)}$	
8.		s(s+3)(s+5)	
4.	(A)	Determine the $C(s)/R(s)$ of the signal flow graph given in Fig. 4(a).	
		G4	
		$R(s) \xrightarrow{1} G1 \xrightarrow{G2} G3 \xrightarrow{1} C(s)$	
			8
		-Hi -H3	
		-H2	
		Fig. 4(a): Signal flow graph	
24			
		Page 1 of 2	

5F0D5E6BDDB3D9CD87250C87E177D6A8

(B) Draw the Bode diagram for the transfer function


6. (A) Sketch the polar plot for the following system.

1

 $G(s) = \frac{Ks^2}{(1+0.2s)(1+0.02s)}$

Determine gain K for gain cross over frequency ω_{g} to be 5 rad/sec. Comment on the stability.

- 5. (A) Explain Controllability and Observability analysis of LTI System using Suitable (10)example.
 - (B) Draw block diagram of Model Reference Adaptive Control and explain its function. (05)
 - network (05)

(B) A linear time invariant system is characterized by the state variable model. Examine the (10)observability of the system.

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -3 \\ 0 & 1 & -4 \end{bmatrix}, \qquad B = \begin{bmatrix} 40 \\ 10 \\ 0 \end{bmatrix}, \qquad C = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

Page 2 of 2

5F0D5E6BDDB3D9CD87250C87E177D6A8

500 V(t)L i/(t C 12(

(C) Define the transfer function and find the transfer function of following electrical

$$l = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -3 \\ 0 & 1 & -4 \end{bmatrix}, \qquad B = \begin{bmatrix} 40 \\ 10 \\ 0 \end{bmatrix}, \qquad C = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

(10)

(10)