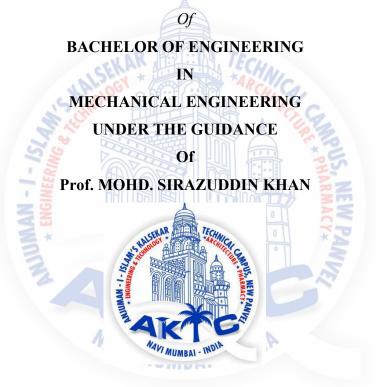
A PROJECT REPORT


ON

"AN EXOSKELETON DEVICE, CHAIRLESS CHAIR"

Submitted by

SHAIKH MOHD SHADAB MOHD ANWAR (13ME50) SHAIKH REHAN SALIM (13ME55) ASIF SIDDIQUE QAISAR ALI (12ME85) ABU OBAIDA SIDDIQUI (11ME05)

In partial fullfillment for the award of the Degree

DEPARTMENT OF MECHANICAL ENGINEERING ANJUMAN-I-ISLAM KALSEKAR TECHNICAL CAMPUS NEW PANVEL, NAVI MUMBAI – 410206 UNIVERSITY OF MUMBAI

ACADEMIC YEAR 2017-2018

ANJUMAN-I-ISLAM KALSEKAR TECHNICAL CAMPUS NEW PANVEL (Approved by AICTE, recg. By Maharashtra Govt. DTE, Affiliated to Mumbai University)

PLOT #2&3, SECTOR 16, NEAR THANA NAKA, KHANDAGAON, NEW PANVEL, NAVI MUMBAI-410206, Tel.: +91 22 27481247/48 * Website: www.aiktc.org

This is to certify that the project entitled **"AN EXOSKELETON DEVICE, CHAIRLESS CHAIR"** Submitted by **SHAIKH MOHD SHADAB MOHD ANWAR (13ME50) SHAIKH REHAN SALIM (13ME55) SIDDIQUE AASIF QAISER ALI (12ME85) SIDDIQUI ABU OBAIDA (11ME05)**

To the Kalsekar Technical Campus, New Panvel is a record of bonafide work carried out by him under our supervision and guidance, for partial fulfillment of the requirements for the award of the Degree of Bachelor of Engineering in Mechanical Engineering as prescribed by **University Of Mumbai**, is approved.

Project Guide (Prof.Mohd. Sirazuddin Khan) Internal Examinar (Prof.____) **External Examiner**

(Prof. Wond. Sirazuddin Knan)

Head of Department (Prof. Zakir Ansari) **Principal** (Dr.Adbul Razzak Honutagi)

П

ANJUMAN-I-ISLAM KALSEKAR TECHNICAL CAMPUS NEW PANVEL (Approved by AICTE, recg. By Maharashtra Govt. DTE,

Affiliated to Mumbai University)

PLOT #2&3, SECTOR 16, NEAR THANA NAKA, KHANDAGAON, NEW PANVEL, NAVI MUMBAI-410206, Tel.: +91 22 27481247/48 * Website: www.aiktc.org

APPROVAL OF DISSERTATION

This is to certify that the thesis entitled **"AN EXOSKELETON DEVICE, CHAIRLESS CHAIR"** Submitted by **SHAIKH MOHD SHADAB MOHD ANWAR (13ME50) SHAIKH REHAN SALIM (13ME55) SIDDIQUE AASIF QAISER ALI (12ME85) SIDDIQUE ABU OBAIDA (11ME05)**

In partial fulfillment of the requirements for the award of the Degree of Bachelor of Engineering in Mechanical Engineering, as prescribed by University of Mumbai approved.

NAVI MUMBAI - INDIA

(Internal Examiner)

(External Examiner)

Date: _____

ACKNOWLEDGEMENT

After the completion of this work, we would like to give our sincere thanks to all those who helped us to reach our goal. It's a great pleasure and moment of immense satisfaction for us to express my profound gratitude to our guide **Prof. Mohd. Sirazuddin Khan** whose constant encouragement enabled us to work enthusiastically. His perpetual motivation, patience and excellent expertise in discussion during progress of the project work have benefited us to an extent, which is beyond expression.

We would also like to give our sincere thanks to **Prof. Zakir Ansari**, Head Of Department, **Prof. Mohd. Sirazuddin Khan**, Project Guide and **Prof. Shaikh Rizwan**, Project co-ordinator from Department of Mechanical Engineering, Kalsekar Technical Campus, New Panvel, for their guidance, encouragement and support during a project.

I am thankful to **Dr. Abdul Razzak Honnutagi**, Kalsekar Technical Campus New Panvel, for providing an outstanding academic environment, also for providing the adequate facilities.

Last but not the least I would also like to thank all the staffs of Kalsekar Technical Campus (Mechanical Engineering Department) for their valuable guidance with their interest and valuable suggestions brightened us.

SHAIKH MOHD SHADAB MOHD ANWAR (13ME50) SHAIKH REHAN SALIM (13ME55) SIDDIQUE AASIF QAISER ALI (12ME85) SIDDIQUE ABU OBAIDA (11ME05)

IV

Table of Contents

Approval Sheet	i
Certificate	ii
Approval of Dissertation	iii
Acknowledgement	iv
Table of Contents	V
List of Figures	vi
Abstract	vii
Chapter 1 Introduction	1
1.1 Problem Definition	2
Chapter 2 Literature Survey	3
Chapter 3 Methodology	5
3.1 Material Selection	7
3.2 Calculation For Design	9
3.3 Market Survey	11
3.4 Cost Estimation	13
3.5 Manufacturing MUMBAI - MOIA	15
Chapter 4 Design Analysis	19
Chapter 5 Conclusion	20
Future Scope	39
References	40
Appendix	41

List of Figures

Fig 3.1	Pneumatic piston cylinder	16
Fig 3.2	Hip Rest	17
Fig 3.3	Thigh Rest	17
Fig 3.4	Shoe Locker	18
Fig 4.1	Model (A4) > Geometry > Figure	24
Fig 4.2	Model (A4) > Mesh > Figure	29
Fig 4.3	Model (A4) > Static Structural (A5) > Figure	32
Fig.4.4	Model (A4) > Static Structural (A5) > Pressure > Figure	33
	NAVI MUMBAL - INDIA	

ABSTRACT

The project title is design and develops the lower body exoskeleton. It is a mechanical ergonomics device that is designed around the shape and function of the human body, with segments and joints corresponding to those of the person it is externally coupled with. It's like a chair that isn't there, but magically appears whenever you need it. In industrial, it is known as the Chair-less Chair and worker in industrial can wear it on legs like an exoskeleton. The purpose of our design revolves around the concept of enhancing the human body through the use of a lower body exoskeleton. This exoskeleton system is designed to be appropriate mechanism with human lower extremity and it operates synchronously with the human realizes .The aim of exoskeleton actuator system is to provide forces against to external load carried by user during walking, sitting, and standing motions.

Although lower body exoskeletons already exist on the market, they still have shortcomings that prevent widespread use among the general public. Our method of achieving our goal consists of splitting up into smaller groups; allowing us to complete work more efficiently. The objectives of this project are to study, analyse, and develope a new mechanism that assist the human locomotion, to learn in details about how the lower body exoskeleton works and understand the concepts involved.

VII

CHAPTER 1

INTRODUCTION

It's an innovative and forward-thinking concept the ability to sit anywhere and every-where with the aid of a chairless chair. The concept was first conceived two years ago by Keith Gunura, co-founder and CEO of NOONEE and since then the company has developed its Chairless Chair and entered talks with a number of leading manufacturers. Designed for static and dynamic industrial market applications, the Chairless Chair aims to increase user's health, comfort, and productivity. It's like a chair that isn't there, but magically appears whenever you need it. It's called the Chairless Chair and you wear it on your legs like an exo skeleton: when it's not activated, you can walk normally or even run. Like a chair that is now there. Standing for hours on end causes a lot of distress to lower limbs, but most workers get very few breaks and chairs are rarely provided, because they take up too much space. So we thought that the best idea was to strap an unobtrusive chair directly to you.

1.1PROBLEM DEFINATION

The world is getting compact day by day. With the development in technology it has become very important to ensure that the most used devices are also compact and small in size, so it is the need of the hour to manufacture something like "Exoskeleton based hydraulic support" or "Wearable Chair" or "Chairless Chair".

This exoskeleton based support would be useful to people whose current job requires them to stand for long hours. This new and modernized "chair" will ease the aches in the thighs and back. It is especially of great use to the elderly, workers in assembly line, trekkers and military who don't always have the option of pulling a chair to rest themselves on the go !

The prime requirements of an effective project organization therefore are:-

- 1) Autonomy
- 2) Group functional integration
- 3) Small group size
- 4) Common work location for all project members
- 5) Team spirit among group members.

All the foregoing requirements are mutually reinforcing, and conjoin together towards effective implementation of this innovative and time-bound project. Factors in consideration of project:-

- 1) Compatibility with the objective, plan.
- 2) Availability of needed scientific and engineering skills in R & D.
- 3) Critical technical problems likely to emerge.
- 4) Market prospects and potential of the proposed new product.
- 5) Availability of production skills needed.
- 6) Financial return expected

CHAPTER 2

LITERATURE SURVEY

In this paper we are very much interested in the wearable devices which help in increasing the efficiency of the human and decrease the rate of fatigue of human during work. The device discussed here is the passive device. This device is known as Chairless Chair which helps the wearer to work effectively at any location in a sitting posture. Stress Analysis on a Chairless Chair 701 H. Zurina and A. Fatinhas worked on the Design and Development of Lower Body Exoskeleton. In his paper an attempt has been made to evaluate the possibility of using the Chairless chair that will help in increasing the energy efficiency and offer weight support when the user feels tired rather than continuously taking on the weight

[2]. Other than that, in term of ergonomics, and the objectives to give comfort to user has achieved by give choices to user to choose their comfort degree level from 45° to 90°. Apart from the benefit of his experiment it can be conclude that his design still confront with some problems that need to fix in future so that the objective to give an ergonomic chair to user can be achieved. The experiment testing has been conducted for our prototype to our group member with weight of 80kg and height around 170cm. From the result of experiment testing, it can be observed that for height and weight, the Chair less chair doesn't give any effect in lack or over measure in its height dimension. It suit the user which prove that this chair can be wear by people from any height range. He tester were required to use the chair while do some work, it was observed that, he had difficulties in changing the degree level.

[3]. Aditya Bhalerao and Sandesh Kamblehave worked on Pneu portable chair for employees to seat while working. By referring to human seating and walking characteristic a leg mechanism has been conceived with as kinematic structure whose mechanical design can be used by employees as an wearable exoskeleton. As per the Specified Design parameters the body can suitably carry around the 100Kg of Human Body weight. In the later part to reduce the cost, Oil was also brought in the weight sustaining mechanism thus providing better results. These type of device with ergonomical background can be easily upgraded with the use of more advanced technologies and culminating various facilities into one body and be constantly modified .A basic idea of how a exoskeleton using Pneumatic or Hydraulic Cylinder can be used to reduce the fatigue by using simple kinematic mechanisms. In this Particular Machine due to certain restrictions not much advancement has been made and it is similar to a tailor made clothing which is just suitable for one single person and may not fit properly to other user. Although as mentioned with advanced 702 Dittakavi Tarun, et al techniques it can be made more generalized for more no, of people to use it

[4]. It has several major applications in real time scenario where it can be worn in the crowded trains or public places with space constrains. Also it can be worn by Traffic Police who work for long hours and are exposed to fatigue for a prolong period of time. Figure 3: Mechanism of Pneu Portable Chair Cyril Varghese and Vedaksha Joshi has worked on the Exoskeleton Based Hydraulic Support was successfully fabricated and it was found to be suitably safe

[5]. Under fluctuating load during walking as well as under Dead Load when the user sits/rests on it. (Tested the Extra Large Size Variant for a user weighting 116 kgs for a span of 43 days) The entire cost of making the EBHS is Rs 8540 (\$ 126.84) thereby making is very economical for the general public as well as for Industrial use and also for the Military. When in full scale production , the EBHS will be available in three sizes , From 5ft to 5"5" : Regular Size , From 5"5" to 6ft : Large Size ,From 6ft to 6"5" : Extra Large Size . The EBHS being extremely light in weight causes very little hindrance while walking and the user can easily get used to it. Figure 4: Schematic Diagram of Hydraulic Mechanism Stress Analysis on a Chairless Chair 703 Noone has worked on the lower limb exoskeletons called Chair less Chair. This product is also known as a "mechatronic device" worn on the legs, which allows the user to walk or run when not activated

[6]. Once the device is activated, it uses a portable variable damper to engage and hold the person's body weight, relieving the stress on leg muscles and joints. The user just needs to move into the desired pose, this activates the device. This device is based on research from the Bio-Inspired Robotics laboratory at ETH Zurich. A belt secures the wearable to the hips and its straps wrap around the thigh. Since it is the chair that can carry the person's body weight, the stress on leg muscles and joints is relieved. The device runs for about 24 hours on a single 6V battery and an aluminum and carbon fiber frame keeps the overall weight of the Chair less Chair at just two kilograms, so it doesn't burden the wearer with too much excess weight. Production-line trials started in Germany with BMW in September and with Audi later in the year 2015. The user can sit comfort in the places where the people are densely crowded using this device. This device is totally controlled by a mechatronic system.

MUMBAL - 🕅

CHAPTER 3

METHODOLGY

Literature of design: -

Initial survey of design was done on internet and actual visit to the manufacturing companies which make the hydraulic machineries. This whole thing was then clubbed to the process of designing.

Preliminary Design: -

A preliminary design was made which was based on operation to be performed and literature study. This design was later been validated by our guide considering all the parameters.

Improvements in design : -

The design which was made in preliminary stage went through certain changes when fabrication process was carried out. Due to some technical reasons the component which was fabricated was changed and in turn there was a change in the design.

Finalized Design: -

The manufacturing setup thus went through some changes in its design and the final setup was made as per the design

Procurement of Components (Buying):-

According to our design, we selected a pneumatic piston cylinder which is being used in car rear opening. It is contains air as major part with small amount of hydraulic oil in it for maintaining pressure

We also bought MS sheet metal for the frame of the structure. A 20cm*20cm Styrofoam was also purchased along with fibre material belt for locking.

Operations Done For Big components :-

For the pneumatic cylinder, reducing its pressure was important for the smooth operation of it. Therefore we drilled the piston n removed all the air and oil so that the piston is free to slide up and down with minimum efforts

Secondly the sheet metal was cut and bend accordingly to acquire the required shape and size. The machines used were speed cutter and hammers. Next, the links were joined by arc welding.drill machine was used to make slots in the required areas.

Lastly, we prepared the shoe locker by making a U-shaped clip for holding the heels of the shoes. We provided bolts to grip the shoes properly

Assembly of components:-

Starting from the bottom, we fixed the shoe locker tightly on the shoes. Then the piston part of the cylinder is fixed at an offset from the shoe. It is fixed tightly with the help of washers. The top part of the cylinder is connected to the links with bolts. And then connected to the hin and thick next

hip and thigh rest.

3.1 MATERIAL SELECTION

To prepare any machine part, the type of material should be properly selected, considering design, safety and following points. The selection of material for engineering application is given by the following factors:-

- Availability of materials
- Suitability of the material for the required components
- Suitability of the material for the desired working conditions
- Cost of the materials

In addition to the above factors the other properties to be considered while selecting the material are as follows :-

Mechanical Properties: These properties are color, shape, density, thermal conductivity, electrical conductivity, melting point etc.

Physical Properties: The properties are associated with the ability of the material to resist the mechanical forces and load.

Strength : It is the property of material due to which it can resist the external forces without breaking or yielding.

Stiffness : It is the ability of material to withstand the deformation under stress.

Ductility: It is the property of material due to which it can be drawn into wires under a tensile load.

Malleability: It is the property of material which enables it to be rolled into sheets

Brittleness: It is the property of material due to which it breaks into pieces with little deformation.

Hardness : It is the property of material to resist wear, deformation and the ability to cut another material.

Resilience : It is the ability of the material to store energy and resist the shock and impact loads.

Creep: It is the slow and permanent deformation induced in a part subjected to a constant stress at high temperature. We have selected the material considering the above factors and also as per the availability of the material.

The materials which cover most of the above properties are :-

MILD STEEL :-

Why steel in particular?

Mild steel contains approximately 0.05–0.25% carbon making it malleable and ductile. Mild steel has a relatively low tensile strength, but it is cheap and easy to form; surface hardness can be increased through carburizing. It is often used when large quantities of steel are needed, for example as structural steel.

In the States, "mild steel" refers to low carbon steel; typically the AISI grades 1005 through 1025, which are usually used for structural applications. With too little carbon content to through harden, it is weldable, which expands the possible applications.

MUMBAL - INT

Properties :

Tensile strength = 44.54 kgf/mm

Yield strength = 28 kgf/mm

Hardness = 170 BHN

3.2 CALCULATION FOR DESIGN

Design of link:-

t = thickness of arm in cm.

Fb = 160 N/mm2

B = width of arm in cm = 4.5 x t Bending moment at 25 mm from center of shaft,

W = maximum force applied by human = 30 kg M = W x L M = 300 x 25 = 7500 Nmm

And section modulus = Z = 1/6 Bt2 Z = 1/6 x 4.5 x t x t2 Z = 1/6 x 4.5 t3

Z = 0.75 t3 mm3

Now using the relation,

Fb = M / Z 160

= 7500/(0.75 t3) t

= 3.9 mm.= 4 mm

B = 4.5 x 4 = 18 mm

So we select section 18 x 4 mm for pivote line Design of welded joint

Checking the strength of the welded joints for safety.

The transverse fillet weld welds the side plate and the edge stiffness plates, The maximum load which the plate can carry for transverse fillet weld is

P = 0.707 x S x L x ft

Where, S = size of weld, L = contact length = 30mm

The load of shear along with the friction is 60 kg = 600 N

Hence,

600 = 0.707 x 3.15 x 30 x ft

Hence let us find the safe value of "ft"

Therefore

ft = 600/ 0.707 x 3.15 x 30 ft = 8.9 N/mm2

Since the calculated value of the tensile load is very smaller than The permissible value as

I - INDIA

ft=21 N/mm2 . Hence welded joint is safe.

Design of bolts:-

For Bolted Joint we used M10 Bolts

do = 10mm

 $dc = do \ge 0.84 dc = 8.4mm$

Shear Area A = $\prod / 4 X (8.4) 2$

A = 55 mm2 τ = F A τ = 500 /55 τ = 9.09 N/ mm2 τ on bolt < τ i.e. 9.09 N/ mm2 < 80 N/ mm2 Design is Safe.

aiktcdspace.org

3.3 MARKET SURVEY

We did a lot of market survey for our project. During our visit to market and industries we communicated with different type of working people in the , Workshop, Industries and small scale Shops. It gave us a bright idea about components available in market. We also had opportunity to interact with Engineer. Among many shops and industries visited by us we enlist few of them below.

NAVI MUMB

- INDIA

- Bharat wire ropes ltd.
- Systematic Group of Companies
- Railway workshop
- Paramount forge
- ARAI PUNE.
- AUTO VISTA
- For materials and equipment's
- BHARAT BAZAAR
- LOKHAND BAZAAR
- KAMOTHE HARDWARES

PHASE1: COMPONENTS AVAILABILITY

- After finalizing our project we had to check the market for availability of components according to our needs.
- We checked for hydro-pneumatic piston cylinder, M.S sheet, Bolts Nuts metallic strips, etc.

PHASE 2: OPTIMIZING BUDGET

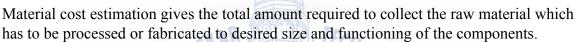
• After visiting above mentioned companies and shops we tried to figure out what stuff should be bought from which place

PHASE 3: BUYING

- We started with the pneumatic piston cylinder
- We managed to buy a second hand pneumatic piston cylinder which saved our 6000-9000 rupees .
- Next major component we bought was material for our frame ,We bought sheet metal at the rate of 50rs/kg. and 20rs more for Bending

NAVI MUMBAI - INDIA

• We bought a dozen pair of Bolts-nuts of the required sizes


3.4 COST ESTIMATION

Cost estimation may be defined as the process of forecasting the expenses that must be incurred to manufacture a product. These expenses take into a consideration all expenditure involved in a design and manufacturing with all related services facilities such as pattern making, tool, making as well as a portion of the general administrative and selling costs.

TYPES OF COST ESTIMATION:-

- 1) Material cost
- 2) Machining cost

1) Material cost :-

a) Raw material cost :-

Raw Material	Bharat Bazar cost (Rs)
20 mm gauge MS Plate	30/kg
Pneumatic piston Cylinder	500/unit * 2
Metallic strips	100/kg
Nut Bolt and Washer	100
Total VI MUM	1230

2) Machining cost :-

Operation	Hours	Cost
Cutting	1	100
Welding	1 hour	200
Drilling	¹ / ₂ hour	50
Grinding	1 hour	50
Painting	1 hour	400
Total Cost	4 ¹ / ₂ hours	800

Total cost = Raw Material cost + Machining Cost + other expenses

$$= 1230 + 800 + 70$$

 $= 2100$

This total cost can be reduced if this machine made in mass production because the machining cost would be very less and material cost would be less if bought in bulk.

3.5 MANUFACTURING

Manufacturing engineering or manufacturing process are the steps through which raw materials are transformed into a final product. The manufacturing process begins with the product design, and materials specification from which the product is made. These materials are then modified through manufacturing processes to become the required part.

Manufacturing takes turns under all types of economic systems. In a free market economy, manufacturing is usually directed toward the mass production of products for sale to consumers at a profit. In a collectivist economy, manufacturing is more frequently directed by the state to supply a centrally planned economy. In mixed market economies, manufacturing occurs under some degree of government regulation.

Modern manufacturing includes all intermediate processes required the production and integration of a product's components. Some industries, such as semiconductor and steel manufacturers use the term fabrication instead.

Basically manufacturing is the process of combining various components by various operations so as to get the final product or machine. In our manufacturing the components required are as follows:-

- 1. Pneumatic piston cylinder
- 2. Thigh rest
- 3. Hip rest
- 4. Shoe gripper
- 5. Links
- 6. Bolts Nuts

3.5.1 PNEAUMATIC PISTON CYLINDER

A Pneumatic cylinder(s) (sometimes known as air cylinders) are mechanical devices which use the power of compressed gas to produce a force in a reciprocating linear motion. Like hydraulic cylinders, something forces a piston to move in the desire direction.

Like hydraulic cylinders, something forces a piston to move in the desire direction. The piston is a disc or cylinder, and the piston rod transfers the force it develops to the object to be moved.[1] :85 Engineers sometimes prefer to use pneumatics because they are quieter, cleaner, and do not require large amounts of space for fluid storage.

Because the operating fluid is a gas, leakage from a pneumatic cylinder will not drip out and contaminate the surroundings, making pneumatics more desirable where cleanliness is a requirement. For example, in the mechanical puppets of the Disney Tiki Room, pneumatics is used to prevent fluid from dripping onto people below the puppets.

Fig 3.1 PNEUMATIC PISTON CYLINDER

3.5.2 HIP REST:-

This is rear part of the device which supports the hip region of the body while sitting. The cushioning effect is given by using Styrofoam wrapped with leather clothing. The user can feel the essence of a normal office chair.

3.5.3 THIGH REST:-

This is the part of the device which takes the max overall load and which is directly connected to the pneumatic piston cylinder. The cross sectional area of thigh rest is more than the hip rest as it is curved along the length of the thighs. Two belts strips are attached on the upper and lower side of this part to grip up with the thighs properly.

Fig 3.3 THIGH REST

3.5.4 SHOE LOCKER:-

For proper gripping with any types of shoes worn by the user, we designed a simple shoe locker that could be tightened with the help of bolts without damaging the shoe.

CHAPTER 4

DESIGN ANALYSIS

CONTENTS

- <u>Units</u> •
- Model (A4)
 - 0 Geometry
 - Parts
 - Coordinate Systems 0
 - Connections 0
 - Contacts •
 - Contact Regions
 - Mesh 0 0
 - **Static Structural (A5)** Analysis Settings
 - •
 - Loads .
 - Solution (A6)
- **Material Data**
- Solution Information . Results Structural Steel NAVI MUMBA - INDIA

Units

TABLE 4.1								
Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius							
Angle	Degrees							
Rotational Velocity	rad/s							
Temperature	Celsius							

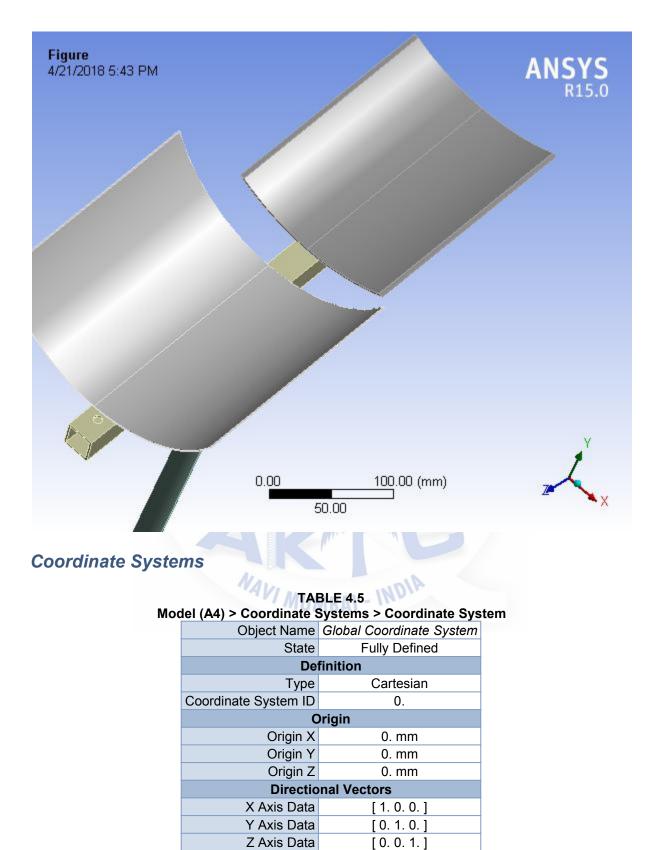
Model (A4)

Geometry

	BLE 4.2 4) > Geometry
Object Name	Geometry
State	Fully Defined
De	finition
Source	C:\Users\24shakil\Desktop\Assem2.STEP
Туре	Step
Length Unit	Meters
Element Control	Program Controlled
Display Style	Body Color
Bour	nding Box
Length X	227.31 mm
Length Y	613.33 mm
Length Z	482.44 mm
Pro	operties
Volume	3.6602e+005 mm ³
Mass	2.8732 kg
Scale Factor Value	
	atistics
Bodies	17
Active Bodies	17
Nodes	35578
Elements	15156
Mesh Metric	None
	ometry Options
Solid Bodies	Yes
Surface Bodies	Yes
Line Bodies	No
Parameters	Yes
Parameter Key	DS
Attributes	No
Named Selections	No
Material Properties	No
	eometry Options
Use Associativity	Yes
Coordinate Systems	No
Reader Mode Saves Updated File	No
Use Instances	Yes
Smart CAD Update	No

Compare Parts On Update	No
Attach File Via Temp File	Yes
Temporary Directory	C:\Users\24shakil\AppData\Local\Temp
Analysis Type	3-D
Mixed Import Resolution	None
Decompose Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes

TABLE 4.3Model (A4) > Geometry > Parts


formed hex formed hex formed hex formed hex some and screw an				• •	> Geometry								
B18.23.2M B18.23.		formed hex	formed hex	formed hex	formed hex	formed hex							
Object Name -Formed hex screw, hex screw, x 20 20WC -Formed hex screw, x 20 20WC -Formed hex screw, x 20 20WC -Formed hex screw, x 35 20WC -Formed hex screw, x 35 20WC -Formed hex screw, x 35 20WC Par total x 1.25 Par total total x 1.25 Par total total y 20 20WC Par total y 20 22WC Par total y 20 22WC <		screw_am_	screw_am_	screw_am_	screw_am_	screw_am_							
Name hex screw, M8 x 1.25 x 20 - 20WC M8 x 1.25 x 20 - 20WC M8 x 1.25 x 20 - 20WC M8 x 1.25 x 35 - 22WC M8 x 1.25 x 50 - 50WC fts fts <thfts< th=""> <thfts< th=""> <thfts< th=""></thfts<></thfts<></thfts<>		B18.2.3.2M	B18.2.3.2M	B18.2.3.2M	B18.2.3.2M	B18.2.3.2M							
M8 x 1.25 x 20 z 20.	Object	- Formed	- Formed	- Formed	- Formed	- Formed	Pa	Pa	Par	Par	Part	Part	
M8 x 1.25 x 20 z 20.			hex screw.	hex screw.	hex screw.	hex screw.	rt5	rt5	t6-1	t6	4-2	4-1	
x 20 20WC x 20 20WC x 35 22WC x 50 22WC x 50 30WC 30WC <th colubration="" for="" td="" th<=""><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td>,</td> <td></td>		,										
20WC 20WC 22WC 50WC 50WC 0 State Graphics Properties Visible Yes Trans Definition Suppressed No Stiffne Stiffne <td></td>													
State Meshed Graphics Properties Visible Yes Definition Suppressed No Suppressed Suppressed Suppressed No Suppressed Superior Material Assign ment Yes Effects Superior Yes Effects Suppressed Ves Effects Sup													
Graphics Properties Visible Yes Transparency 1 2 Suppressed No Suppressed No Suppressed No Suppressed	State	20110	20110	22110									
Visible Yes Transparency 1 Suppressed No Suppressed No Suppressed No Suppressed Definition Suppressed No Suppressed No Suppressed Default Coordinate System Syste Default Coordinate System mate Default Coordinate System Syste By Environment e Material Assign Structural Steel Nonlin Yes Effects Yes Therm Yes Effects Yes Length 25.5 mm 40.5 mm 55.5 mm 41. mm 25. 157 4. 13. Length 15.011 mm 17.674 mm 15.011 mm 20. mm 135 73. 32.4 25.	State			Gran									
Transparency Definition y Definition Suppressed No Siffness Flexible ss Behavi or Default Coordinate System Coordinate Default Coordinate System Reference By Environment remp By Environment eratur Yes Effects Yes Thermal Yes Effects Yes Length 25.5 mm 40.5 mm 55.5 mm 41. mm 25. mm 13. mm Length 15.011 mm 17.674 mm 15.011 mm 20. mm 135 73. 32.4 25.5	Visible			CEX AN	11 1 7 1 17153	FCH1.							
Definition Units			-	AL-GY *		ARCICO							
y Definition Suppressed No Stiffness Siffness Ss Behavi or Flexible Coordinate System mate Default Coordinate System Default Coordinate read Default Coordinate System By Environment read By Environment ear Yes Effects Yes Therm Yes Effects Yes Length 25.5 mm 40.5 mm 55.5 mm 41. mm 25. 157 4. 13. mm Length 15.011 mm 17.674 mm 15.011 mm 20. mm 135 73. 32.4 25.4				NOLUS A		HITCH							
Definition Suppressed No Stiffne ss Belavi Flexible Stehavi or Default Coordinate System Flexible Coordinate syste Default Coordinate System Flexible Refere nce By Environment Flexible Temp eratur By Environment Flexible Material Structural Steel Material Noinin ear Yes Flexible Effects Yes Flexible Length 25.5 mm 40.5 mm 55.5 mm 41. mm 25. 157 mm 4. 13. Length 15.011 mm 17.674 mm 15.011 mm 20 mm 135 73. 32.4 25.5			5.2	Hu III		Q2 . F	C						
essed Stiffne ss Behavi or Coordi nate Syste m Refere nce Temp eratur e Material Assign ment Nonlin ear Structural Steel Nonlin ear Yes Effects Therm al Stratur Structural Steel Ves Effects Therm al Stratur Structural Steel Nonlin ear Yes Effects Therm al Stratur Structural Steel Nonlin Effects Therm al Stratur Struct					Definition								
essed Stiffne ss Behavi or Coordi nate Syste m Refere nce Temp eratur e Material Assign ment Nonlin ear Structural Steel Nonlin ear Yes Effects Therm al Stratur Structural Steel Ves Effects Therm al Stratur Structural Steel Nonlin ear Yes Effects Therm al Stratur Structural Steel Nonlin Effects Therm al Stratur Struct	Suppr		55			1 0 1	*	3					
ss Behavi or Flexible Flexible Coordi nate Syste m Default Coordinate System Default Coordinate System Refere nce remp eratur e By Environment Image: Structural Steel Material Assign ment Structural Steel Nonlin ear Yes Image: Structural Steel Nonlin ear Yes Image: Structural Steel Nonlin ear Yes Image: Structural Steel Strain Effects Yes Image: Structural Steel Length 25.5 mm 40.5 mm 55.5 mm 41. mm 25. Length 15.011 mm 17.674 mm 15.011 mm 20 mm 135 73. 32.4 25.				AN	INO		PH	2					
ss Behavi or Flexible Flexible Coordi nate Syste m Default Coordinate System Default Coordinate System Refere nce remp eratur e By Environment Image: Structural Steel Material Assign ment Structural Steel Nonlin ear Effects Yes Effects Yes Effects Yes Length X 25.5 mm 40.5 mm 55.5 mm 41. mm 25. 157 4. 13. mm Length 15.011 mm 17.674 mm 15.011 mm 20 mm 135 73. 32.4 25.	Stiffne						AR	2					
Behavi or Plexible Coordi nate Syste Default Coordinate System Syste Default Coordinate System Refere nce By Environment Temp eratur e By Environment Yes Effects Yes Effects Structural Steel Nonlin ear Yes Effects Therm al Strain Yes Effects Length 15 011 mm 17 674 mm 15 011 mm 135 73 32.4							3						
or Default Coordinate System m Default Coordinate System m By Environment remp By Environment e Material Assign ment Structural Steel Nonlin ear Yes Effects Yes Therm al Strain Effects Effects Yes Length 25.5 mm 40.5 mm 55.5 mm 41. mm 25. mm 135 73. 32.4 25.			N S		Flexible	24101	A	2					
Coordi nate Default Coordinate System Refere nce By Environment Perform By Environment erature Structural Steel Nonlin ear Yes Effects Yes Therm al Structural Steel Yes Effects Yes Length 12.5.5 mm 41. mm 25.5 mm 41. mm 20. mm 135 73. 32.4 25.5 Length 15.011 mm 17.674 mm 15.011 mm 20. mm 135 73. 32.4 25.5			2 "			1991 all	7	-					
nate Syste mDefault Coordinate SystemRefere nce Temp eratur eBy EnvironmentBy EnvironmentBy EnvironmentMaterialAssign MaterialYesFrector Structural SteelNonlin ear EffectsYesEffectsTherm al StrainFrector YesEffectsStructural SteelYesEffectsYesEffectsStrain EffectsYesLength M15 011 mm17 674 mm15 011 mm 20 mm15 011 mm 20 mm15 011 mm 20 mm			3										
Syste Default Coordinate System m Refere nce By Environment Temp By Environment e Material Assign ment Structural Steel Nonlin ear Yes Effects Yes Therm al Strain Strain Yes Length 25.5 mm 15 011 mm 17 674 mm 15 011 mm 135 15 011 mm 17 674 mm			3				1	5					
mRefere nce Temp eratur eBy EnvironmentBy EnvironmentBy EnvironmentMaterialAssign mentStructural SteelNonlin ear EffectsYesEffectsTherm al StrainEffectsVesElfectsLength X25.5 mm41. mm 25.5 mm25.5 mm41. mm 25.7332.425.Length X15.011 mm17.674 mm 15.011 mm135.7332.425.5			2	Defa	ault Coordina	te System		7					
Refere nce Temp eratur e By Environment Material By Environment Structural Steel Assign ment Structural Steel Yes Nonlin ear Effects Yes Yes Effects Yes Image: Structural Steel Image: Structural Steel Nonlin ear Effects Yes Image: Structural Steel Image: Structural Steel Length X 25.5 mm 40.5 mm 55.5 mm 41. mm 25. mm Image: Structural Steel Length 15.011 mm 17.674 mm 15.011 mm 20. mm Image: Structural Steel	-												
nce Temp eratur eBy EnvironmentBy EnvironmentMaterialAssign mentStructural SteelNonlin ear ear EffectsYesStrain EffectsYesTherm al Strain EffectsStructural SteelYesEffectsVesEffectsLength X25.5 mm41. mm 25.5 mm13573. 32.425.Length X15.011 mm17.674 mm 15.011 mm13573. 32.425.													
By Environment By Environment By Environment Material Assign ment Structural Steel Nonlin ear Yes Effects Yes Therm al Strain Effects Yes Elength 25.5 mm 41. mm 25. 157 4. 13. mm Length 25.5 mm 41. mm 25. 157 4. 13. mm Length 15.011 mm 20. mm 135 73. 32.4 25.													
MumBAN - We Material Assign ment Structural Steel Nonlin ear Yes Effects Yes Therm al Yes Strain Yes Effects Yes Length X 25.5 mm 40.5 mm 55.5 mm 41. mm 25. Material Material Length 15.011 mm 17.674 mm 15.011 mm 20. mm 135 73. 32.4 25.				NAL	By Environ	nent							
e Material Assign ment Structural Steel Nonlin ear Yes Effects Yes Therm al Yes Strain Yes Effects Yes Length 25.5 mm 40.5 mm 55.5 mm 41. mm 25. 157 4. 13. Length 15.011 mm 17.674 mm 15.011 mm 20. mm 135 73. 32.4 25.				VIV M									
MaterialAssign mentStructural SteelNonlin ear EffectsYesYesEffectsYesYesTherm al Strain EffectsYesYesStrain EffectsYesYesYesLength X25.5 mm40.5 mm55.5 mm41. mm25. mm157 mm4. mm13. mmLength Length15.011 mm17.674 mm15.011 mm20 mm13573. 32.425.				- 11	OWBA								
Assign mentStructural SteelNonlin ear ear EffectsYesFrem Strain al Strain EffectsYesVesEffectsYesEffectsYesEffectsYesEffectsYesEffectsYesLength X25.5 mm41. mm 25. $\frac{157}{mm}$ 4. 13. mm mmLength X15.011 mm 15.011 mm20. mm 13573. 32.425.	0				Material								
Ment Structural steel Nonlin ear Effects Yes Effects Yes Therm al Strain Effects Yes Ves Understand Length X 25.5 mm 41. mm 25. Length X 25.5 mm 41. mm 25. Length 15.011 mm 20. mm 135.73. 32.4 25.	Assign					No. ol							
$\begin{array}{c} {\mbox{ear}\ {\mbox{ear}\ {\mbox{effects}\ {\mbox{fighter}\ {\mbox{fighter}\ {\mbox{ear}\ {\mbox{eighter}\ {\mbox{fighter}\ {figh$	•				Structural S	bleel							
ear Effects Yes Therm al Strain Effects Yes Strain Effects Yes	Nonlin												
Effects Yes Yes Strain Effects Effects Length X 25.5 mm 41. mm 25. 157 4. 13. mm Length X 25.5 mm 41. mm 25. 157 4. 13. mm Length X 25.5 mm 41. mm 25. 157 4. 13. mm Length 15.011 mm 20. mm 13. 12. 011 mm Length 15.011 mm 17. 674 mm 15.011 mm 20. mm 13. 22.4 25.					Yes								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$													
al Strain Effects Yes Yes Length X 25.5 mm 41. mm 25. Length 25.5 mm 41. mm 25. Length 15 0.11 mm 20. mm 13. 13. mm Length 15 0.11 mm 20. mm 13. 22. 25.													
Yes Strain Effects Tes Bounding Box Length X 25.5 mm 41. mm 25. 157 4. 13. Length 15.011 mm 15.011 mm 20. mm 135 73. 32.4 25.													
Effects Bounding Box Length X 25.5 mm 40.5 mm 55.5 mm 41. mm 25. mm 157 to the mm 4. mm 13. mm Length X 15.011 mm 15.011 mm 17.674 mm 15.011 mm 20. mm 135 to 73. 32.4 to 25.					Yes								
Bounding Box Length X 25.5 mm 40.5 mm 55.5 mm 41. mm 25. mm 157 hmm 4. mm 13. mm Length X 15.011 mm 15.011 mm 17.674 mm 15.011 mm 20. mm 135 73. 32.4 25.													
Length X25.5 mm40.5 mm 55.5 mm 41. mm $25. \text{ mm}$ 157 mm 4. mm $13. \text{ mm}$ Length15.011 mm17.674 mm15.011 mm20 mm13573.32.425.	LICUS			Bo	unding Roy								
Length X 25.5 mm 40.5 mm 55.5 mm 41. mm 25. mm 4. mm 13. mm Length 15.011 mm 17.674 mm 15.011 mm 20 mm 135 73. 32.4 25.										157			
Length 15 011 mm 17 674 mm 15 011 mm 20 mm 135 73. 32.4 25.	Length	25 5	mm	40.5 mm	55 5	mm	11	mm	25.	137	4.	13.	
Length 15 011 mm 17 674 mm 15 011 mm 20 mm 135 73. 32.4 25.	Х	20.0		40.5 mm	55.5		· · · · · ·	11111	mm	mm	mm	mm	
	المرة منظاء								405		20.4	25	
1 .44 6/1 92 mm			15.011 mm		17.674 mm	15.011 mm	20. 1	mm					
	Ý								.44	0/1	92	mm	

								mm	mm	mm			
Length Z		13. mm			13. mm 18.786 mm 13. mm 205. mm			421 .82 mm	208 .02 mm	17. mm	13. mm		
				Properties									
Volum e	1724.2	2 mm³	2478.2 mm³	3232.	1 mm³	14128 mm³		787 18 mm ₃	667 75 mm ₃	182 9.9 mm ³	146 9.5 mm ³		
Mass	1.3535e	e-002 kg	1.9454e- 002 kg	2.5372e	e-002 kg		109 g	0.6 179 4 kg	0.5 241 8 kg	1.43 64e - 002 kg	1.15 35e - 002 kg		
Centro id X	-325.4	-325.48 mm		-326.4	12 mm	- 34 6.0 7 m m	- 30 4.2 2 m m	-	-325.1	15 mn	n		
Centro id Y	-528.3	35 mm	-102.35	-125.64 mm	-58.027	-528.34 mm		- 31. 69 mm	29. 634 mm	- 524. mm	- 498. 63 mm		
Centro id Z	71.999 mm	-1.3414e- 003 mm	-9.3565e- 004 mm	86.929 mm	105.05 mm	89.596 mm				6.7 727 mm	- 144 .77 mm	2.04 5e- 013 mm	1.83 59e - 013 mm
Mome nt of Inertia Ip1	0.19643	kg∙mm²	0.24272 kg∙mm²	0.28901	kg·mm²		3.65 mm²	955 0. kg· mm 2	191 0.4 kg· mm ²	1.17 73 kg· mm ²	0.80 889 kg· mm ²		
Mome nt of Inertia Ip2	0.87755 kg⋅mm²		3.1157 kg∙mm²	7.5169	kg·mm²		958 nm²	109 .92 kg· mm ²	104 0.4 kg· mm ²	0.39 44 kg· mm 2	0.34 42 kg· mm ²		
Mome nt of Inertia Ip3			3.1157 kg∙mm²	UMBA\ - 7.5169	kg∙mm²).01 nm²	955 0. kg· mm ²	291 7.9 kg· mm ²	1.53 34 kg· mm 2	0.80 889 kg· mm ²		
				Statistics									
Nodes			1172		12	46	632 4	387 4	254	565			
Eleme nts	517 538		8 594 506 311 0 558				27	271					
Mesh Metric				None									

TABLE 4.4 Model (A4) > Geometry > Parts

Object Name	Dort 1	Dort?	Dort?	Dout 1 0	Dout 1	Dout1		
Object Name	Part4	Part3	Part2 Meshed	Part1-2	Part1-1	Part1		
State		Cranhias D						
) <i>(</i> ' - 'b - b -		Graphics F	•					
Visible			Yes					
Transparency			1					
		Defini						
Suppressed			No					
Stiffness Behavior			Flexible					
Coordinate System		Def	fault Coordinat	e System				
Reference			By Environn	hent				
Temperature								
		Mate						
Assignment		A	Structural S	teel				
Nonlinear Effects			Yes					
Thermal Strain		- 64	Yes					
Effects		NR PEL	AN. IECI.					
		Boundir						
Length X	10. mm	22. mm	25. mm 🥠	1 A 1 A	mm	227.31 mm		
Length Y	330. mm	363. mm	54.171 mm	() (119	. mm	121. mm		
Length Z	10. mm	25. mm	118.52 mm	54.30)1 mm	220.7 mm		
		Prope	rties					
Volume	25918 mm ³	45177 mm ³	24663 mm ³	8420	. mm³	63980 mm ³		
Mass	0.2 <mark>03</mark> 46 kg	0.35464 kg	0.1936 kg	6.60976	e-002 kg	0.50224 kg		
Centroid X	-325.15 mm	-325.12 mm	-325.15 mm	-343.65	-306.65	-325.15 mm		
	-525.15 1111	-325.12 11111	-325.15 1111	🛄 mm 🦰	nm 📄	-525.15 1111		
Centroid Y	-342.34 mm	-278.74 mm	-115.93 mm	-75.18	34 mm	1.8795 mm		
Centroid Z	2.1275e-013 mm	1.0978e-006 mm	50.704 mm	100.4	15 mm	121.1 mm		
Moment of Inertia	1826.6	33.795	206.	77 173	kg∙mm²	1891.		
lp1	kg∙mm²	kg∙mm²	kg∙mm²	11.113	kymm	kg∙mm²		
Moment of Inertia	2.4857	3790.1	32.531	73 666	kg∙mm²	2474.5		
lp2	kg∙mm²	kg∙mm²	kg∙mm²	10.000	Ng min	kg∙mm²		
Moment of Inertia	1826.6	3791.2	209.31	3 6064	kg∙mm²	3965.5		
lp3	kg∙mm²	kg·mm²	kg∙mm²	0.0004		kg∙mm²		
		Statis						
Nodes	890	4769	1337	370	349	8856		
Elements	140	140 2440 593 39 36 4170						
Mesh Metric			None					

FIGURE 4.1 Model (A4) > Geometry > Figure

Connections

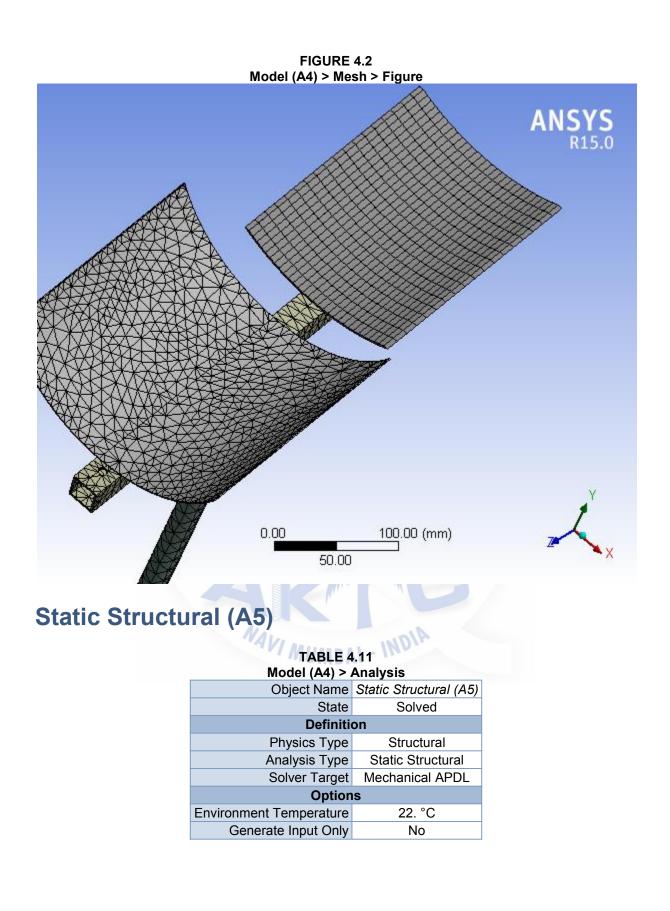
TABLE 4.6Model (A4) > Connections	
Object Name	Connections
State	Fully Defined
Auto Detection	
Generate Automatic Connection On Refresh	Yes
Transparency	
Enabled	Yes

	TAB Model (A4) > Con	LE 4 necti		ntacts			
	Object Name	A	Contacts				
	State Fully Defined						
	Def	initio	n				
	Connection Type		Contact				
	Sc	cope					
	Scoping Method	Geo	metry Sele	ection			
15	Geometry	44	All Bodies	S EC			
5	Auto E)etec	tion	34			
2.8	Tolerance Type	王	Slider				
23	Tolerance Slider	A-	0.				
	Tolerance Value		2.0319 mr	n 🎽 🎽			
• 2	Use Range		No				
N 9	Face/Face		Yes	A			
	Face/Edge		No				
2	Edge/Edge		No	0			
2	Priority	un	Include A				
4	Group By		Bodies				
	Search Across	11	Bodies				

TABLE 4.8 Model (A4) > Connections > Contacts > Contact Regions

Model (A4) > Connections > Contacts > Contact Regions											
Object Name	Conta ct Regio n	Conta ct Regio n 2	Conta ct Regio n 3	Conta ct Regio n 4	Conta ct Regio n 5	Contact Region 6	Contact Region 7	Conta ct Regio n 8	Conta ct Regio n 9	Conta ct Regio n 10	Conta ct Regio n 11
State		Fully Defined									
Scope											
Scoping Method	Geometry Selection										
Contact	9 Faces	2 Faces	9 Faces	2 Faces		es	9 Faces	2 Faces	9 Faces	2 Faces	
Target	3 Faces	2 Faces	3 Faces	2 Faces		5 Faces	4 Faces	3 Faces	2 Faces	4 Faces	
Contact Bodies	formed hex screw_am_B18.2.3.2M - Formed hex screw, M8 x 1.25 x 20 20WC				formed hex screw_am_B18.2.3. 2M - Formed hex screw, M8 x 1.25 x 3522WC		formed hex screw_am_B18.2.3.2M - Formed hex screw, M8 x 1.25 x 5050WC				
Target		Pa	rt5		Part4-	Part3	Par	t2	Part1-	Part1-	Part6-

Bodies	2 2 1 1							
	Definition							
Туре	Bonded							
Scope Mode	Automatic							
Behavior	Program Controlled							
Trim Contact	Program Controlled							
Trim Tolerance	2.0319 mm							
Suppress ed	No							
	Advanced							
Formulati on	Program Controlled							
Detection Method	Program Controlled							
Penetratio n Tolerance	Program Controlled							
Elastic Slip Tolerance	Program Controlled							
Normal Stiffness	Program Controlled							
Update Stiffness	Program Controlled							
Pinball Region	Program Controlled Radius Program Controlled							
Pinball Radius	3. mm							
Geometric Modification								
Contact Geometry Correctio n	None							

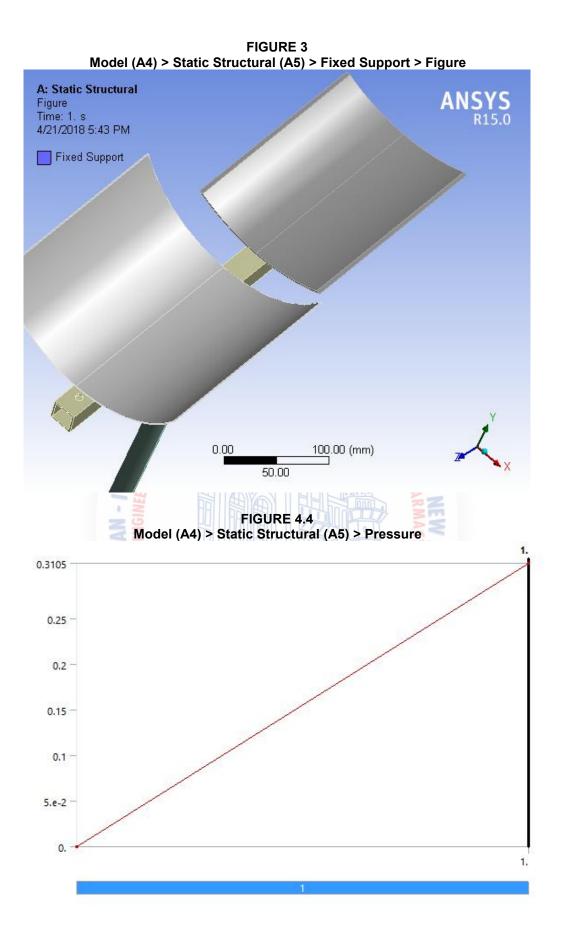

TABLE 4.9 Model (A4) > Connections > Contacts > Contact Regions

	model (A+) > connections > contacts > contact Regions									
Object Name	Contact Region 12	Contact Region 13	Conta ct Regio	Conta ct Regio	Conta ct Regio	Conta ct Regio	Conta ct Regio	No Separatio n - Part4	Conta ct Regio	Conta ct Regio
			n 14	n 15	n 16	n 17	n 18	To Part3	n 20	n 21
State					Fully De	fined				
Scope										
Scoping Method	Geometry Selection									
Contact	9 Faces 2 Faces 1 Face			3 Faces		2 Faces	1 Face			
Target	3 Faces 2 Faces 1 Face		ace	2 Faces	3 Faces		2 Faces	1 Face		
Contact Bodies	formed hex screw_am_B18.2.3. 2M - Formed hex screw, M8 x 1.25 x 5050WC		Pa	rt5	Part6- 1	Part4- 2	Part4- 1	Part4	Part1- 2	Part1- 1
Target	Part1-2 Part1-1		Par	t4-2	Part6	Part4-	Part4	Part3	Part1	

Bodies								
	Definition							
Туре	Bonded Separatio Bonded n							
Scope Mode	Automatic							
Behavior	Program Controlled							
Trim Contact	Program Controlled							
Trim Tolerance	2.0319 mm							
Suppresse d	No							
	Advanced							
Formulatio n	Program Controlled							
Detection Method	Program Controlled							
Penetratio n Tolerance	Program Controlled							
Elastic Slip Tolerance	Program Controlled Program Controlled							
Normal Stiffness	Program Controlled							
Update Stiffness	Program Controlled							
Pinball Region	Program Controlled							
	Geometric Modification							
Contact Geometry Correction	None							
	NAVI MUMBAL - INDIA							

Mesh

TABLE 4.10 Model (A4) > Mesh	1					
Object Name	Mesh					
State	Solved					
Defaults						
Physics Preference	Mechanical					
Relevance	0					
Sizing						
Use Advanced Size Function	Off					
Relevance Center	Fine					
Element Size	Default					
Initial Size Seed	Active Assembly					
Smoothing	Medium					
Transition	Fast					
Span Angle Center	Coarse					
Minimum Edge Length	0.60 mm					
Inflation						
Use Automatic Inflation	None					
Inflation Option	Smooth Transition					
Transition Ratio	0.272					
Maximum Layers	5					
Growth Rate	1.2					
Inflation Algorithm	Pre					
View Advanced Options	No -					
Patch Conforming Opt						
Triangle Surface Mesher						
Patch Independent Op						
Topology Checking	Yes					
Advanced						
Number of CPUs for Parallel Part Meshing	Program Controlled					
Shape Checking	Standard Mechanical					
Element Midside Nodes	Program Controlled					
Straight Sided Elements	No					
Number of Retries	Default (4)					
Extra Retries For Assembly	Yes					
Rigid Body Behavior	Dimensionally Reduced					
Mesh Morphing	Disabled					
Defeaturing						
Pinch Tolerance	Please Define					
Generate Pinch on Refresh	No					
Automatic Mesh Based Defeaturing	On					
Defeaturing Tolerance	Default					
Statistics	05570					
Nodes	35578					
Elements Mach Matria	15156					
Mesh Metric	None					



Model (A4) > Static Structural (A5) > Analysis Settings					
Object Name	Analysis Settings				
State	Fully Defined				
	Step Controls				
Number Of Steps	1.				
Current Step Number	1.				
Step End Time	1. s				
Auto Time Stepping	Program Controlled				
	Solver Controls				
Solver Type	Program Controlled				
Weak Springs	Program Controlled				
Large Deflection	Off 4PC/C				
Inertia Relief	Off				
	Restart Controls				
Generate Restart Points	Program Controlled				
Retain Files After Full Solve					
	Nonlinear Controls				
Newton- Raphson Option	Program Controlled				
Force Convergen ce	Program Controlled				
Moment Convergen ce	Program Controlled				
Displacem ent Convergen ce	Program Controlled				
Rotation Convergen ce	Program Controlled				
Line Search	Program Controlled				
Stabilizatio n	Off				
	Output Controls				
Stress	Yes				
Strain	Yes				
Nodal	No				

 TABLE 4.12

 Model (A4) > Static Structural (A5) > Analysis Settings

Forces				
Contact				
Miscellane		0		
OUS				
General				
Miscellane	e No	0		
ous				
Store		Points		
Results At				
	Analysis Data Manag	gement		
Solver		SHAKIL 24shakil 4960 2\unsaved project		
Files	files/dn0/S			
Directory				
Future	NOr	ne		
Analysis				
Scratch Solver				
Files	A			
Directory				
Save				
MAPDL db		OTRO		
Delete	CENAL ALL SCHAL			
Unneeded		S ARCH. CI		
Files				
Nonlinear				
Solution				
Solver				
Units	Active S	System 5		
Solver Unit				
System				
	TABLE 4.13			
	Model (A4) > Static Structur			
	Object Name Fixed Support	Pressure		
	State	Defined		
	Scope			
		ry Selection		
	Geometry 2 Faces			
	Definition			
	Type Fixed Support	Pressure		
	Suppressed No			
	Define By	Normal To		
		.3105 MPa (ramped)		
		, , , , , , , , , , , , , , , , ,		

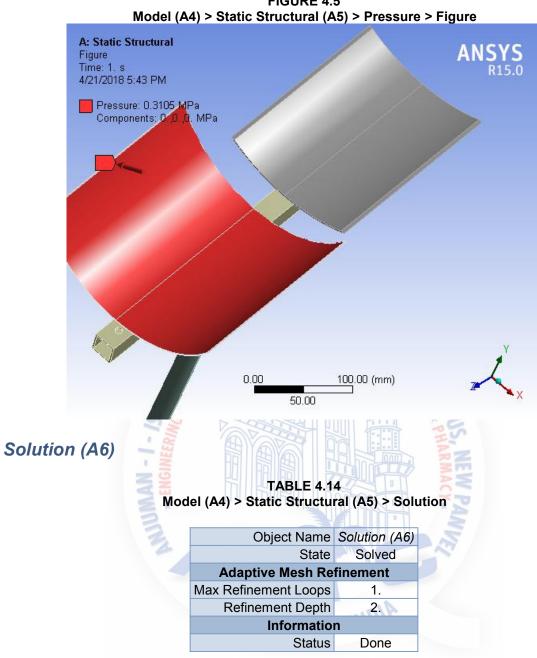


FIGURE 4.5

TABLE 4.15

Model (A4) > Static Structural (A5) > Solution (A6) > Solution Information

Object Name	Solution Information
State	Solved
Solution Inform	ation
Solution Output	Solver Output
Newton-Raphson Residuals	0
Update Interval	2.5 s
Display Points	All
FE Connection V	sibility
Activate Visibility	Yes
Display	All FE Connectors
Draw Connections Attached To	All Nodes
Line Color	Connection Type

TABLE 4.16 Model (A4) > Static Structural (A5) > Solution (A6) > Results						
Object Name	Equivalent Stress	Total Deformation	Equivalent Stress 2	Equivalent Stress 3	Equivalent Stress 4	Equivalent Stress 5
State			Solve	ed		
Cooping			Scope			
Scoping Method			Geometry S			
Geometry	All Bo		1 Body	3 Bo	odies	1 Body
			Definition			
Туре	Equivalent (von-Mises) Stress	Total Deformation	E	Equivalent (vor	n-Mises) Stres	s
By			Time	9		
Display Time			Las	t		
Calculate Time History			A Yes	5		
Identifier						
Suppressed		1	No			
		Integrati	on Point Res	ults		
Display Option	Averaged	SENA		Aver	aged	
Average Across Bodies	No	ANOLOGI A		RCHITEC N	lo	
			Results			
Minimum	5.4901e-006 MPa 😂	0. mm	66.815 MPa	2.0233e-002 MPa	2.3629e-003 MPa	25.582 MPa
Maximum	86437 MPa	603.19 mm	86437 MPa	5457.6 MPa	13499 MPa	6500. MPa
Minimum Occurs On		t5		Part6-1	Part4	
Maximum Occurs On	Part3	Part1		Part1-1	Part4	
		Minimum	Value Over 1	Time		
Minimum	5.4901e-006 MPa	0. mm	66.815 MPa	2.0233e-002 MPa	2.3629e-003 MPa	25.582 MPa
Maximum	5.4901e-006 MPa	0. mm	66.815 MPa	2.0233e-002 MPa	2.3629e-003 MPa	25.582 MPa
		Maximum	Value Over	Time		
Minimum	86437 MPa	603.19 mm	86437 MPa	5457.6 MPa	13499 MPa	6500. MPa
Maximum	86437 MPa	603.19 mm	86437 MPa	5457.6 MPa	13499 MPa	6500. MPa
		In	formation			
Time			1. s	i		
Load Step			1			
Substep	1					
Iteration Number			1			

		TABL	E 4.16		
~	04-41-	Cturreturel		Caluttan	1.00

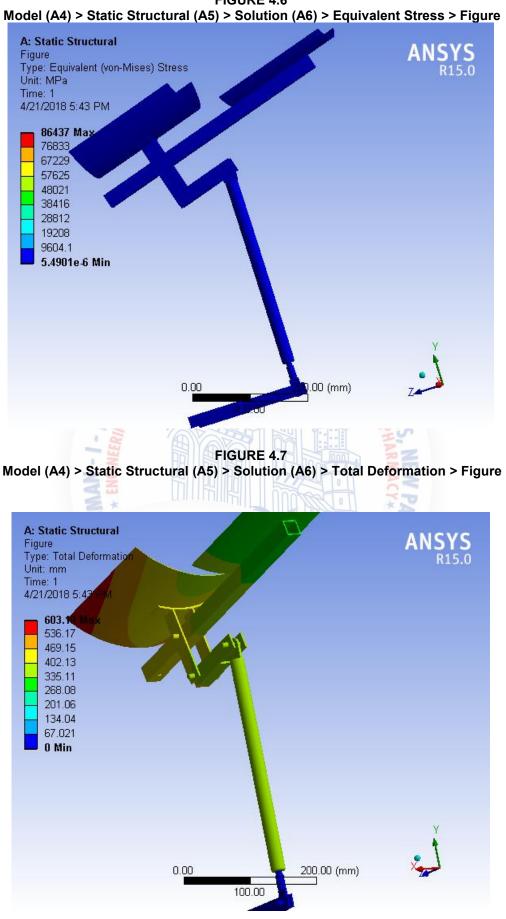


FIGURE 4.6

Material Data

Structural Steel

TABLE 4.17 Structural Steel > Constants				
Density	7.85e-006 kg mm^-3			
Coefficient of Thermal Expansion	1.2e-005 C^-1			
Specific Heat	4.34e+005 mJ kg^-1 C^-1			
Thermal Conductivity	6.05e-002 W mm^-1 C^-1			
Resistivity	1.7e-004 ohm mm			

TABLE 4.18 Structural Steel > Compressive Ultimate Strength Compressive Ultimate Strength MPa

0

 TABLE 4.19

 Structural Steel > Compressive Yield Strength

 Compressive Yield Strength MPa

250

 TABLE 4.20

 Structural Steel > Tensile Yield Strength

 Tensile Yield Strength MPa

 250

 TABLE 4.21

 Structural Steel > Tensile Ultimate Strength

 Tensile Ultimate Strength MPa

 460

 TABLE 4.22

 Structural Steel > Isotropic Secant Coefficient of Thermal Expansion

 Reference Temperature C

 22

TABLE 4.23

Structural Steel > Alter	mating S	tress Mean Stress
Alternating Stress MDa	Cycles	Moon Stroop MDo

Alternating Stress MPa	Cycles	Mean Stress MPa
3999	10	0
2827	20	0
1896	50	0
1413	100	0
1069	200	0
441	2000	0
262	10000	0
214	20000	0
138	1.e+005	0
114	2.e+005	0
86.2	1.e+006	0

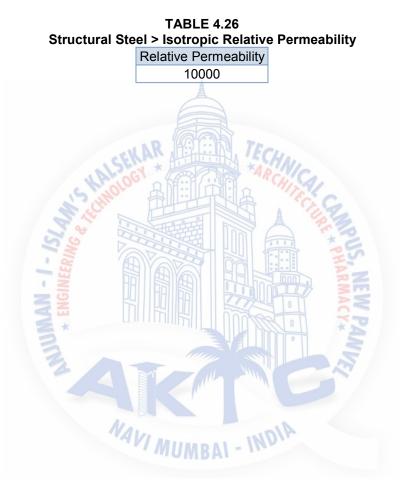

Structural Steel > Strain-Life Parameters						
Strength Coefficient MPa	Strength Exponent	Ductility Coefficient		Cyclic Strength Coefficient MPa	Hardenind	
920	-0.106	0.213	-0.47	1000	0.2	

TABLE 4.24 Structural Steel > Strain-Life Parameters

 TABLE 4.25

 Structural Steel > Isotropic Elasticity

Temperature C	Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa
	2.e+005	0.3	1.6667e+005	76923

CHAPTER 5

CONCLUSION

Hence our design is affordable and specially designed for the people at different assembly line work Due to this arrangement peoples felt relaxed who were suffering from the back pain and spinal cord diseases. The design project is a success based on tilting device. It reduced body fatigue and increased the workability of the person in the office hours as well as in the commercial places. When in full-scale production, the Chairless chair will be available in three sizes, From 5ft to 5"5": Regular Size From 5"5" to 6ft: Large Size From 6ft to 6"5": Extra Large Size

FUTURE SCOPE

The basic operation of this machine to reduce fatigue by sustaining the weight of the wearer in a similar fashion as that by a regular chair. As your leg weakness progresses due to increasing in your age, your health care team may recommend equipment known as ambulation aids and bracing to help you with walking. Other devices can help give you needed support as the muscles in your neck and arms weaken.

There may be a use of such exoskeletons which can give more effect than braces and ambulation aids. The specific aid or device that's best for you depends on the extent of the weakness and your willingness to use such a device. Using such instruments for walking climbing, doing work is safe and you're confident that you won't fall. For some, this means having an attendant or using an assistive device when walking short distances.

Such instruments are going to bring more flexibility, mobility and most importantly the confidence Apart from in medical therapy and military sector, active or hoses or exoskeletons offer other applications, for example as a power booster during assembly work in production. They act here as a strength support device to prevent signs of fatigue that occur especially when performing repetitive actions.

NAVI MUMBAI - INDIA

REFERENCE

[1] noonee.com/.../8.../17-first-chairless-chair-user-trials-completed-with-au...

[2] robohub.org/noonee-testing-chairless-chair.

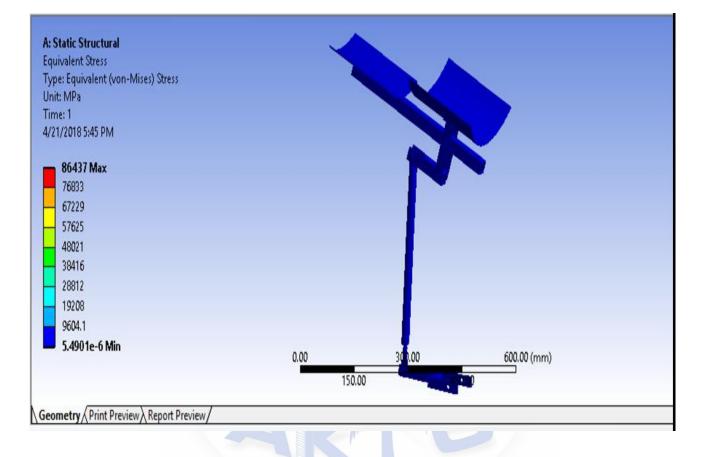
[3] Nextbigfuture.com/2015/03/lower-body-exoskeleton Blodgett O.W., Design of Weldments, The James Lincoln Arc Welding Association, USA, 1972.

[4] Von Wagner, Houlden, Analysis of Hydraulic Cylinders under Load, Ph.D. Thesis, Univ. of Melbourne, 1995.

- [5] Thierauf, Spiegel, Exoskeleton based chair, Johns Hopkins Univ. Press, Baltimore, 1983.
- [6] Bedford J.E., Form in Engineering Design, Oxford, 1954.

[7] Bedford J.E., Form in Engineering Design, Oxford, 1954.

[8] Blodgett O.W., Design of Weldments, The James Lincoln Arc Welding Association, USA, 1972.


[9] Woolman J. and R.A. Mottram, The Mechanical and Physical Properties of British Standard EN Steels, (Three Volumes), The British Iron and Steel Research Association,Pergamon Press, 1968.

[10]Harris T.A., Rolling Bearing Analysis, John Wiley, 1966

APPENDIX

Appendix-I:	Full body Analysis	.42
Appendix-II:	Pneumatic piston analysis	43
Appendix-III	Stress on Links	.44
Appendix-IV	: Full body Analysis (with load)	45

Fig. Static structural analysis (Full Body)

Fig shows that at static condition when no load is applied, there is minimum stress induced inside the structure. The analysis is done on ANSYS and theory applied is Von-missess criteria

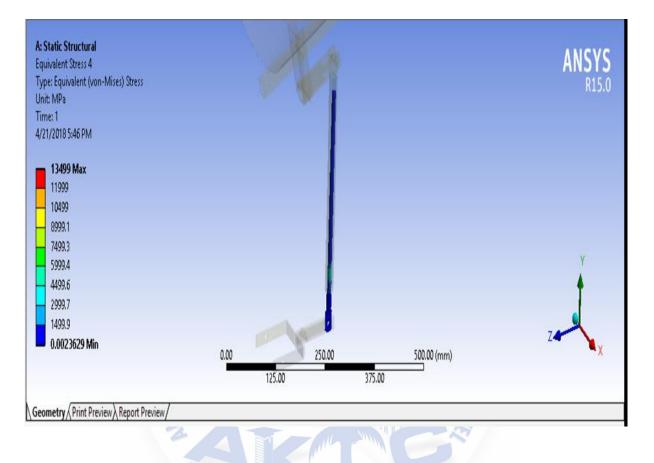
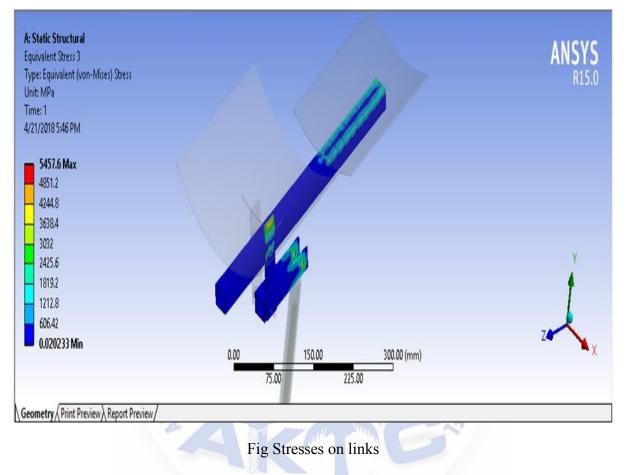



Fig. Static structural analysis (elongated pneumatic cylinder)

Fig shows that when we apply a pressure of 3105 N/m2 the minimum stress is 0.0023629 Mpa and the max stress is 13499Mpa

At loading position the max stress goes to the pivot point which is 5457.6Mpa and minimum stress is0.02023Mpa

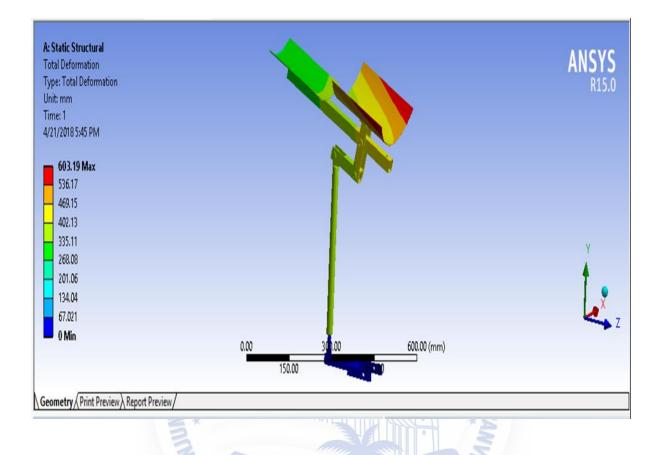


Fig shows the Total deformation results of the structure.

At full load the max deformation or stress concentration occurs on the thigh rest part.