

School of Engineering & Technology

School of Pharmacy

KALSEKAR TECHNICAL CAMPUS

Knowledge Resource & Relay Centre (KRRC)

AIKTC/KRRC/SoET/ACKN/QUES/2017-18/	Date:		
School: SoET-CBSGS Branch: ELECT. ENGG.	SEM:III		
To, Exam Controller,			
AIKTC, New Panvel.			
Dear Sir/Madam,			
Received with thanks the following Semester/Unit Test-I/Unit T	Test-II (Reg./ATKT) question		

Received with thanks the following Semester/Unit Test-I/Unit Test-II (Reg./ATKT) question papers from your exam cell:

Sr.	Subject Name	Subject Code	Format		No. of	
No.			SC	HC	Copies	
1	Applied Mathematics- III	EEC301		V	02	
2	Electronic Devices & Circuits	EEC302		/	02	
3	Conventional And Non-Conventional Power Generation	EEC303				
4	Electrical Networks	EEC304		V	02	
5	Electrical And Electronic Measurement	EEC305				
		7				

Note: SC - Softcopy, HC - Hardcopy

(Shaheen Ansari) Librarian, AIKTC

SE-Sem-III _ CBS45 - Electrical / EXTC Paper/Subject Code: 49402/APPLIED MATHEMATICS III

28/11/18

Q. P. Code: 37078

(3 Hours)	[Total marks :	2
,		

Note	:-	 Question number 1 is compulsory. Attempt any three questions from the remaining five questions. Figures to the right indicate full marks. 	
Q.1	a)	Evaluate $\int_0^\infty e^{-2t} \sin^2 2t \ dt$.	05
	b)	Find an analytic function $f(z) = u + iv$ where $u + v = e^x(\cos y + \sin y)$.	05
	c)	Obtain Fourier series of $x \cos x$ in $(-\pi, \pi)$.	05
	d)	Evaluate $\int_C \overline{F} \cdot d\overline{r}$ where $\overline{F} = x^2 i + xy j$ from $(0,0)$ to $(1,1)$ along the parabola $y^2 = x$.	05
Q.2	a)	Find half-range cosine series for $f(x) = e^x$, $0 < x < 1$.	06
	b)	Prove that $\bar{F} = (x + 2y + az) i + (bx - 3y - z) j + (4x + cy + 2z) k$ is solenoidal and determine the constants a, b, c if \bar{F} is irrotational.	06
	c)	Prove that $w = i\left(\frac{z-i}{z+i}\right)$ maps upper half of the z -plane into the interior of the unit circle in the w -plane.	08
Q. 3	a)	Prove that $J_n(x)$ is an even function if n is even integer and is an odd function if n is odd integer.	06
	b)	Find the inverse Laplace transform of $\frac{s^2+2s+3}{(s^2+2s+5)(s^2+2s+2)}.$	06
			0.0
	c)	Obtain the complex form of Fourier series for $f(x) = e^{ax}$ in $(0, a)$.	08
Q. 4	a)	Prove that $\nabla f(r) = f'(r) \frac{\bar{r}}{r}$ and hence, find f if $\nabla f = 2r^4\bar{r}$.	06
	b)	Prove that $4J''_n(x) = J_{n-2}(x) - 2J_n(x) + J_{n+2}(x)$.	06

Paper / Subject Code: 49402 / APPLIED MATHEMATICS III

Q. P. Code: 37078

- (i) Find the Laplace transform of e^{4t} sin³t.
 04
- (ii) Find the Laplace transform of $t \sqrt{1 + \sin t}$.
- Q. 5 a) Prove that $\int x \cdot J_{\frac{2}{3}}(x^{\frac{3}{2}}) dx = -\frac{2}{3} x^{-\frac{1}{2}} J_{-\frac{1}{3}}(x^{\frac{3}{2}}).$
 - b) Find p if $f(z) = r^2 \cos 2\theta + i r^2 \sin p\theta$ is analytic.
 - c) If $f(x) = \begin{cases} \pi x, & 0 \le x \le 1 \\ \pi (2 x), & 1 \le x \le 2 \end{cases}$ with period 2, show that $f(x) = \frac{\pi}{2} \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \cos(2n+1) \pi x.$
 - Show that the set of functions $\cos nx$, $n = 1, 2, 3, \dots$ is orthogonal 06

Q. 6 a)

on $(0, 2\pi)$.

- Use Stoke's theorem to evaluate $\int_C \bar{F} \cdot d\bar{r}$ where $\bar{F} = (2x y) i yz^2 j y^2 z k$ and S is the surface of hemisphere $x^2 + y^2 + z^2 = a^2$ lying above the xy -plane.
- c) Use Laplace transform to solve $\frac{d^2y}{dt^2} + y = t \text{ with } y(0) = 1, y'(0) = 0.$

$\left(\begin{array}{c} 1 \end{array} \right)$

Paper / Subject Code: 49401 / ELETRONIC DEVICES AND CIRCUITS

20/11/18

SE-sem-III - Electrical - CBGS

(3 Hours)

[Total Marks:80]

N.B.	(1)	Question no.1 is compulsory. Attempt any three questions from Question No. 2 to 6	
	(2) (3)	Make any suitable assumption wherever required.	
Q.1		Answer any four.	
	(a)	Give the working principle of Photodiode with its application	5M
	(b)	Explain the various bias compensation techniques in a BJT.	5M
	(c)	Determine the operating point parameters I_{CQ} and V_{CEQ} for the Fixed Bias circuit. Assume $\beta = 100$ and $V_{BE} = 0.7V$, $R_C = 3k\Omega$, $R_B = 470K\Omega$, $V_{CC} = 12V$.	5M
	(d)	Explain the Effect of negative feedback on voltage gain, input impedance, output impedance, and bandwidth.	5M
	(e)	State and Explain Barkhausen's criteria for sustained oscillations.	5M
Q.2	(a)	Analyze Voltage Shunt Negative feedback Amplifier with respect to Input Resistance, Output Resistance and Voltage gain.	10M
	(b)	Derive expression for voltage gain, input impedance and output impedance of a CS amplifier.	10M
Q.3	(a)	Draw FWR with C filter and describe the circuit operation with waveform. Compare the performance of C, L, LC filters	10M
	(b)	Explain the Colpitts Oscillator in detail with circuit diagram and equations.	10M
Q.4	(a)	Explain Crystal oscillator with the help of suitable diagram and waveforms.	10M
	(b)	Give the DC and AC analysis of Dual Input Unbalanced output differential Amplifier	10M
Q.5	(a)	Explain the Construction and Working of E-MOSFET with the help of its characteristics.	10M
	(b)	Explain various types of coupling and their effect on the performance of BJT.	10M
Q.6		Write short note on following. (Any TWO)	20M
	(a)	Zener Diode as voltage Regulator.	
	(b)	Hartley Oscillator.	
	(c)	re-model used in Transistor	

Paper / Subject Code: 49405 / ELECTRICAL NETWORKS

12/12/18

(Time: 3 Hours)

[Total marks: 80]

N.B:- (1) Question 1 is compulsory

- (2) Solve any three questions from remaining five questions.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if necessary.
- Q1 Attempt the following

20

- a) Derive the response on unit step signal in case of series RL circuit.
- b) Explain Millman's theorem.
- c) What do you understand by tree, link and twig. Explain with example
- d) Test whether $P(s) = s^5 + 2s^4 + 4s^3 + 6s^2 + 2s + 5$ is hurwitz
- Q2 a) For a given graph, write incidence matrix, f-cutset and f-tieset matrix.

10

Q2 b) The network shown is under steady state with switch at position 1. At t=0, switch is moved to position 2. Find i(t).

10

Paper / Subject Code: 49405 / ELECTRICAL NETWORKS

Q3 In the network shown in figure, the switch is changed from position 1 to 2 at t=0, steady state condition having reached before switching. Find the values of 10 $i, \frac{di}{dt}, \frac{d^2i}{dt^2}$ at t=0⁺.

Q3 In the network shown, the switch is open for a long time and at t=0, it is closed. 10 Determine $V_2(t)$.

Q4 Use nodal analysis to find Vy in the given circuit.

10

Q4 Find the Z parameters for the network shown. Hence find h 10 b) parameters.

58816

Paper / Subject Code: 49405 / ELECTRICAL NETWORKS

- Q5 a) For a series RLC circuit H=1, for its driving point admittance. Pole diagram 10
- a) is given in figure. Find values of R, L and C.

10

10

- Q5 Realize Foster I and Foster II for following impedance function
- b) $Z(s) = \frac{(s^2 + 1)(s^2 + 3)}{s(s^2 + 2)}$
- Q6 Find V₀ in the network
- a) shown

Q6 Find h_{12} , Z_{12} , Y_{12} and h_{22} for the given two port network.

