Topic: Introduction toFatty Acids Subject: Biochemistry Class: F.Y. B. Pharm. (Sem.-1) Academic Year: 2018-19 Programme: 2018-2021

Dr.Ripudaman Assistant Professor AIKTC, School of Pharmacy, New Panvel

Learning Outcome

• Introduction to Lipids

 Introduction to common saturated and unsaturated fatty acids

Introduction to triacyl glycerol, phospholipids, sphingolipids

Mapping of TLO with Course Outcome

Торіс	TLO	Bloom Taxonomy	СО
	CENAR THE TEC	HAL.	
Introduction to	Students will be	L1-Remembering-	2
common	able to	(List, Identi <mark>fy,</mark>	
saturated and	Identify and draw	Outline)	
unsaturated fatty	structure of fatty	RINE	
acids	acids	H SP	
DUM	Distinguish		
Introduction to	between		
triacyl glycerol,	spingolipids and		
phospholipids,	phospholipids	0.04	
sphingolipids			

LIPIDS

- DEFINITION
- CLASSIFICATION (STRUCTURAL AND FUNCTIONAL)
- FUNCTIONS OF DIETARY LIPIDS
- CHEMICAL NATURE OF FATTY ACIDS
- NOMENCLATURE
 - Saturated Fatty acids
 - Unsaturated Fatty acids
 - Positional and geometric isomerism
 - Essential Fatty acids

DEFINITION

Heterogeneous group of organic compounds which are

- relatively insoluble in water,
- but soluble in organic solvents such as ether, benzene and chloroform.

CLASSIFICATION:(STRUCTURE)

1. Simple Lipids a. <u>Fats & Oils (TRIGLYCERIDES)</u> F.A. esters with Glycerol (Triacyglycerols)

b. <u>Waxes</u>

F.A. esters of long chain monohydroxy alcohols (Cetylpalmitate)

CLASSIFICATION:(STRUCTURE) Contd

2. Complex Lipids

a. Phospholipids (contain phosphate group)

Glycerophospholipids

Alcohol is Glycerol (e.g.phosphatidylcholine) Sphingophospholipids

Alcohol is sphingosine (C18 amino alcohol)

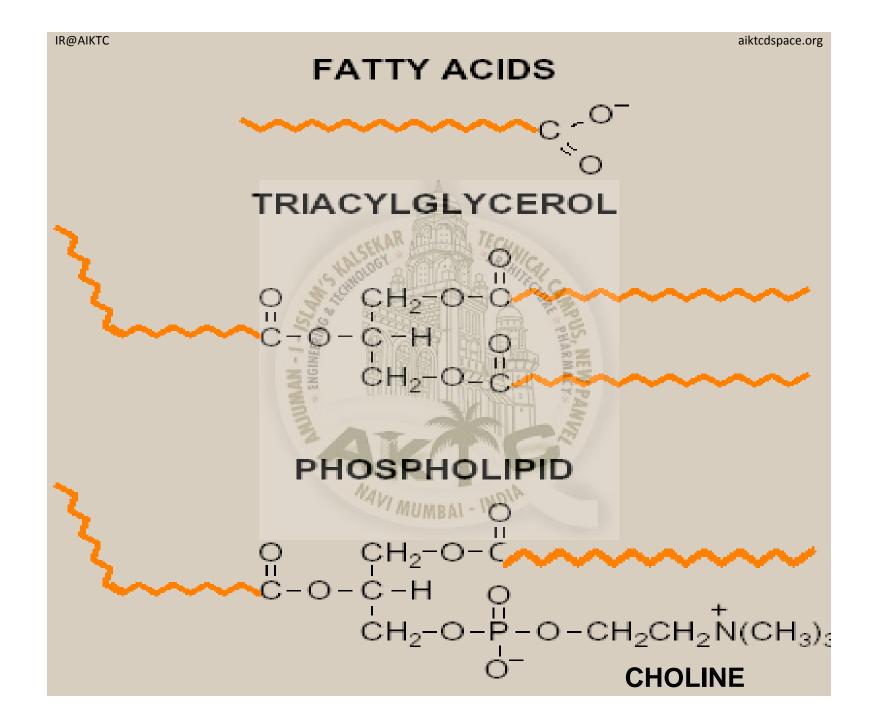
b. Glycolipids

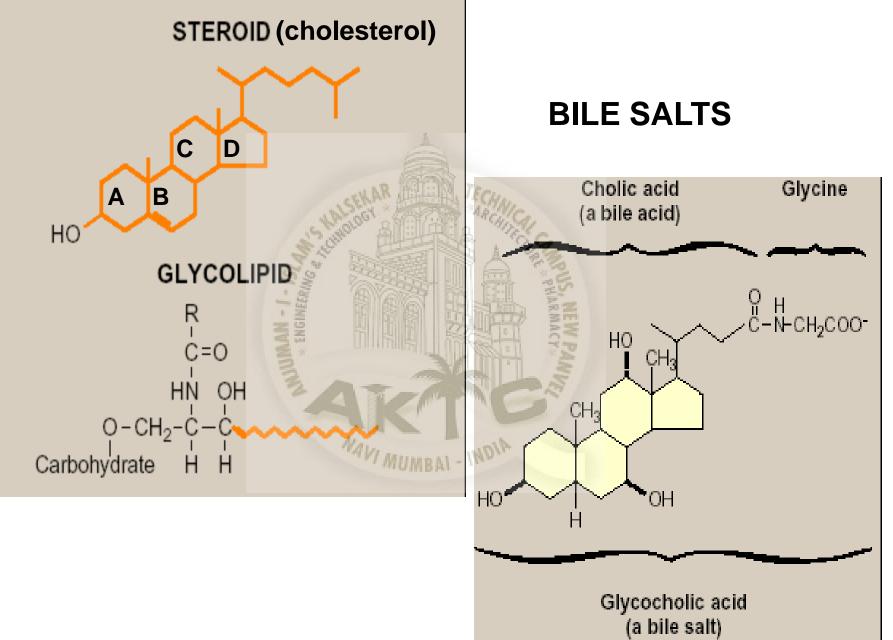
Contain F.A, Sphingosine and Carbohydrate

c. Other Complex Lipids

Sulfolipids, Aminolipids, Lipoproteins

CLASSIFICATION (Contd)


3. PRECURSOR & DERIVED LIPIDS


F.A, Alcohols & Aldehydes

4. MISCELLANEOUS LIPIDS

Fat Soluble Vitamins, Carotenoids, Steroids (Cholesterol, Steroid hormones, Bile Salts)

Eicosanoids

IN CLASSIFICATION (Functional parts of the second states of the second s

• FATTY ACIDS

- TRIGLYCERIDES
- PHOSPHOLIPIDS

- Metabolic fuel; component of several other classes of lipids
 - Main storage form of fatty acids and chemical energy
- Components of membranes; sources of arachidonic acid, inositol trisphosphate (IP3), and diglyceride (DAG) for Signal Transduction

• SPHINGOLIPIDS

Components of membranes; Imp. in signal transduction

IR@AIKTC CLASSIFICATION (Functional)aiktcdspace.org Contd

• CHOLESTEROL

 Component of membranes; precursor of bile salts and steroid hormones

• BILE SALTS

Lipid digestion and absorption; main product of cholesterol metabolism • STEROID HORMONES

- EICOSANOIDS Prostaglandins, Thromboxanes, Leukotrienes
- VITAMINS *A,D,E,K*

 Intracellular signals that regulate gene expression in target cells

Regulators of physiological /immunological functions. Local hormones

Vision; calcium metabolism; antioxidants; blood coagulation

aiktcdspace.org

FATTY ACIDS

- Monocarboxylic
- Usually straight-chain having even number (2-26) of carbon atoms
- Most common are C12-C22
- Short-Chain (2-4 C atoms)
- Medium- Chain (6-10 C atoms)
- Long-Chain (12-20 C atoms)
- Very long-Chain (C22 and above)

Saturated Fatty Acids

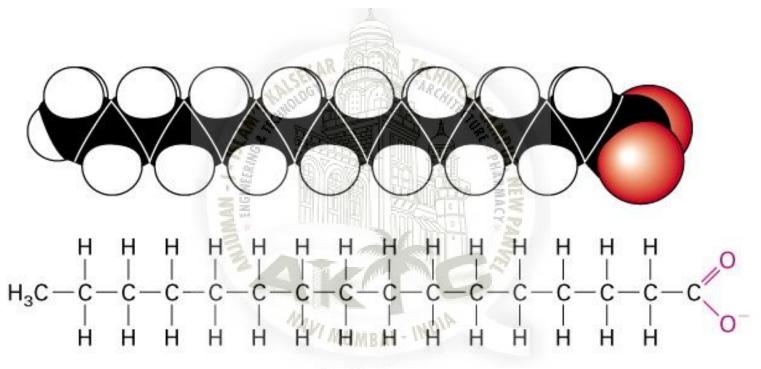
Most Commonly occurring are

- Myristic Acid (14:0)
- Palmitic Acid (16:0)
- Stearic Acid (18:0)

Since the carboxylic group is ionized at physiological pH, they exist as carboxylate ion e.g. **palmitate**

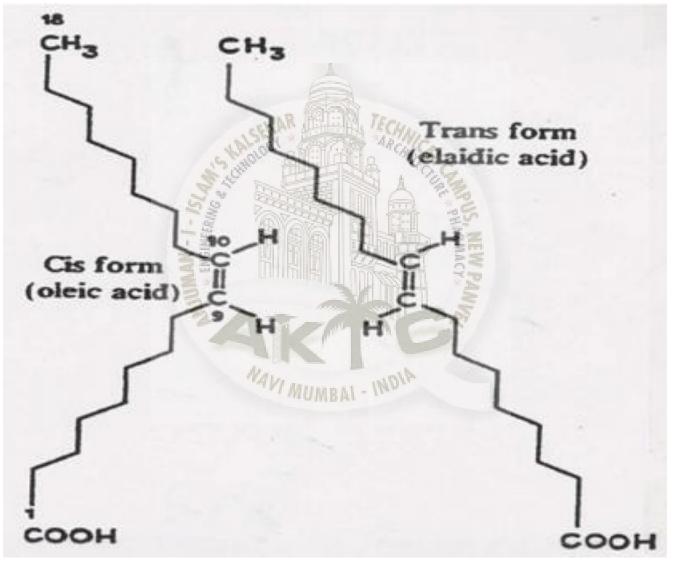
CH₃ (CH₂)₁₄-COOH $-CH_3(CH_2)_{14}$ -COO⁻ + H⁺

рКа 4.8

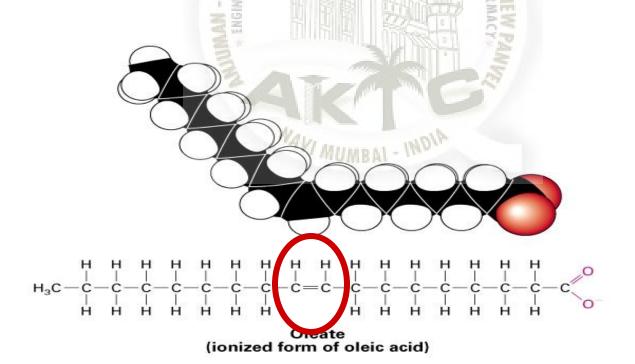

UNSATURATED FATTY ACIDS

Contain carbon to carbon double bonds.

MUFA


- Mono-unsaturated (1 double bond)
 OLEIC ACID 18:1 (high concentrations in olive oil)
 PUFA
- Polyunsaturated (> 1 double bond)
 LINOLEIC ACID, 18:2
 α-LINOLENIC ACID, 18:3
 ARACHIDONIC ACID 20:4

STRUCTURE OF SATURATED FATTY ACIDS


Palmitate (ionized form of palmitic acid)

POSITIONAL AND GEOMETRIC ISOMERISM^{aiktrdspace.org} UNSATURATED FATTY ACIDS

POSITIONAL AND GEOMETRIC ISOMERISM IN UNSATURATED FATTY ACIDS

- cis configuration mostly present in naturally occurring fatty acids
- *cis* double bond causes a bend. Therefore the hydrocarbon chain cannot be packed as tightly as in trans fatty acids
- Melting points of fatty acids with *cis* double bonds are lower than the corresponding *trans* fatty acids

POSITIONAL AND GEOMETRIC ISOMERISM IN UNSATURATED FATTY ACIDS (CONTD)

Stearic acid Elaidic acid Oleic acid

 MELTING TEMPERATURE

 18:0
 69°C

 18:1 trans Δ⁹
 44°C

 18:1cis Δ⁹
 13°C

<u>Trans</u> Fatty acids, unlike <u>Cis</u> isomers, increase plasma cholesterol levels (total and LDL) and decrease HDL-cholesterol

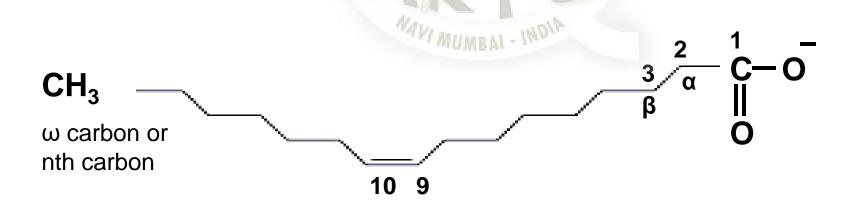
Current concerns about trans fatty acid intake and attempt to \checkmark their dietary intake

NOMENCLATURE

Fatty acids

Common (trivial) names

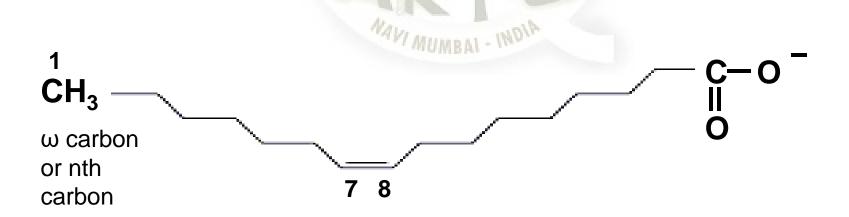
Systematic names (derived from parent hydrocarbons)


- Saturated fatty acids end with <u>anoate</u>
 Palmitate is hexadecanoate
- Unsaturated fatty acids end with <u>enoate</u>
 The position of the double bond (counting from the COOH toward CH3 group) and its geometric configuration (cis or trans) is indicated

The palmitoeate will be called cis- Δ^9 –hexadec<u>enoate</u>.

IR@AIKTC

NOMENCLATURE (CONTD) aiktcdspace.org


- There are 2 systems to number the position of carbon to carbon double bonds
- 1. The Δ system, according to which one starts counting from carboxyl carbon as C1 and goes toward the methyl carbon *e.g.* Palmitoleate will be called 16:1 Δ^9

NOMENCLATURE (CONTD)

2. The ω - (or n-) system which starts counting from the CH₃ carbon as C1. The position of the first double bond is indicated

e.g. palmitoleate will be 16: 1 ω -7 (n-7)

aiktcdspace.org

IR@AIKTC

ESSENTIAL FATTY ACIDS

- Linoleic acid 18:2 $\Delta^{9,12}$ or 18:2 ω -6 (n-6)
- **\alpha-Linolenic acid** 18:3 $\Delta^{9,12,15}$ or 18:3 ω -3 (n-3)
- These fatty acids cannot be synthesized by the human body and therefore have to be provided in the diet.
- Insufficient amounts in the diet result in EFA Deficiency (very rare) infants: scaly dermatitis, growth retardation Also present in CYSTIC FIBROSIS patients (Vignette 2)

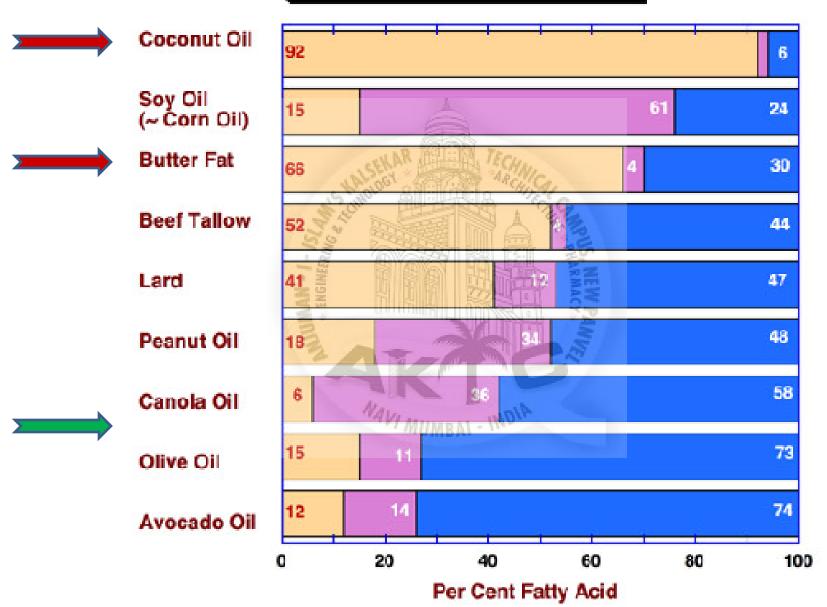
Other Important PUFA'S

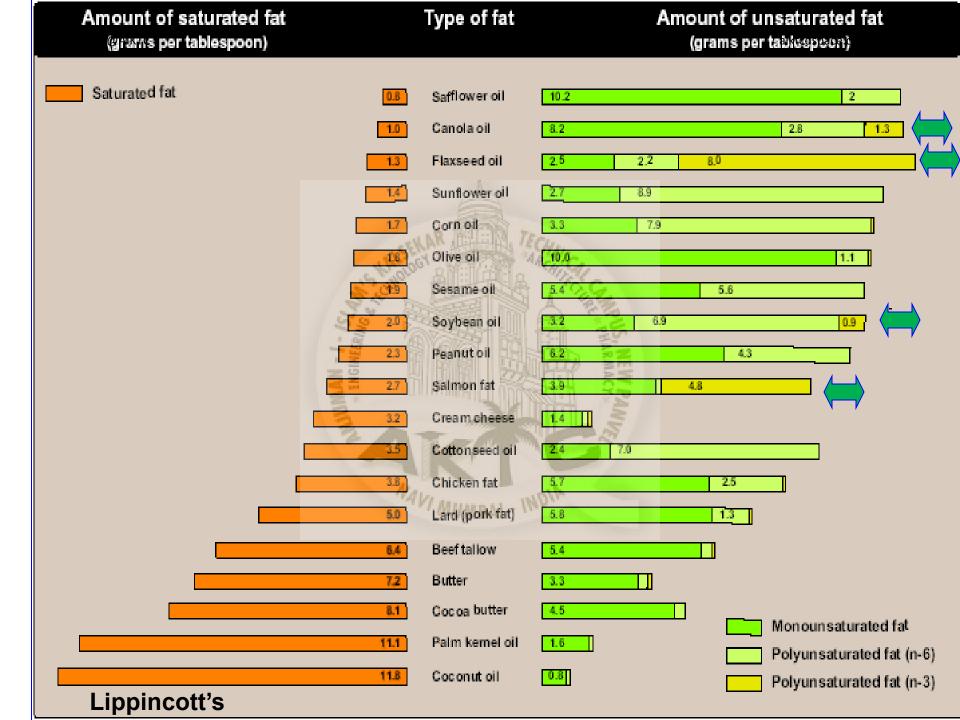
• Arachidonic Acid $20:4 \omega - 6$

Present in animal tissues

A common precursor of eicosanoids

- Eicosapentaenoic Acid 20:5 ω -3
 Present in fish oils. Also a precursor of different class of eicosanoids
- Docosahexaenoic acid 22:6 ω -3


Present in fish oils


Omega 3 fatty acids are important components of developing brain and retina

Heath benefits of ω -3 Fatty acids

- Higher intakes associated with low risk of cardiovascular disease
- Higher intakes can reduce the risk of sudden heart attacks in individuals with cardiovascular disease
- Reduce blood triglyceride levels
- May be helpful in treatment of depression and other psychiatric diseases
- May reduce joint tenderness and requirements of antiinflammatory medications in patients with arthritis

References

 Biochemistry of Lipids, Lipoproteins and Membranes by J E Vance and Dennis E Vance

 "Lipid Chemistry" by Khetarpaul Neelam and Khetarpaul Vipul

Review Question for attainment of TLOs/CO

 Definitions of lipids and draw structures of any two fatty acids

• Write short note on spingolipids

