
Service By KRRC (Central
Library)

IR@AIKTC-KRRC aiktcdspace.org

C - Arrays
• Arrays a kind of data structure that can store a fixed-size sequential

collection of elements of the same type. An array is used to store a
collection of data, but it is often more useful to think of an array as a
collection of variables of the same type.

• Instead of declaring individual variables, such as number0,
number1, ..., and number99, you declare one array variable such as
numbers and use numbers[0], numbers[1], and ..., numbers[99] to
represent individual variables. A specific element in an array is
accessed by an index.

• All arrays consist of contiguous memory locations. The lowest address
corresponds to the first element and the highest address to the last
element.

IR@AIKTC-KRRC aiktcdspace.org

Declaring Arrays
• To declare an array in C, a programmer specifies the type of the

elements and the number of elements required by an array as
follows −

type arrayName [arraySize];

• This is called a single-dimensional array. The arraySize must be an
integer constant greater than zero and type can be any valid C data
type. For example, to declare a 10-element array called balance of
type double, use this statement −

double balance[10];

• Here balance is a variable array which is sufficient to hold
up to 10 double numbers.

IR@AIKTC-KRRC aiktcdspace.org

Initializing Arrays
• You can initialize an array in C either one by one or using a single

statement as follows −

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

• The number of values between braces { } cannot be larger than the
number of elements that we declare for the array between square
brackets [].

• If you omit the size of the array, an array just big enough to hold the
initialization is created. Therefore, if you write −

double balance[] =
{1000.0,2.0,3.4,7.0,50.0};

IR@AIKTC-KRRC aiktcdspace.org

Initializing Arrays
• You will create exactly the same array as you did in the

previous example. Following is an example to assign a
single element of the array −

balance[4] = 50.0;
• The above statement assigns the 5th element in the

array with a value of 50.0. All arrays have 0 as the index
of their first element which is also called the base index
and the last index of an array will be total size of the
array minus 1. Shown below is the pictorial
representation of the array we discussed above −

IR@AIKTC-KRRC aiktcdspace.org

Multi-dimensional Arrays in C
• C programming language allows

multidimensional arrays. Here is the general
form of a multidimensional array declaration −

type name[size1][size2]...[sizeN];
• For example, the following declaration creates a

three dimensional integer array −

int threedim[5][10][4];

IR@AIKTC-KRRC aiktcdspace.org

Two-dimensional Arrays
• The simplest form of multidimensional array is the two-

dimensional array. A two-dimensional array is, in
essence, a list of one-dimensional arrays. To declare a
two-dimensional integer array of size [x][y], you would
write something as follows −

type arrayName [x=rows][y=cols];
• Where type can be any valid C data type and

arrayName will be a valid C identifier. A two-dimensional
array can be considered as a table which will have x
number of rows and y number of columns. A two-
dimensional array a, which contains three rows and four
columns can be shown as follows −

IR@AIKTC-KRRC aiktcdspace.org

Initializing Two-Dimensional Arrays
• Multidimensional arrays may be initialized by specifying bracketed values

for each row. Following is an array with 3 rows and each row has 4
columns.

int a[3][4] = {
{0, 1, 2, 3} , /* initializers for row indexed by 0
*/
{4, 5, 6, 7} , /* initializers for row indexed by 1
*/
{8, 9, 10, 11} /* initializers for row indexed by 2
*/

};

• The nested braces, which indicate the intended row, are optional. The
following initialization is equivalent to the previous example −

int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

IR@AIKTC-KRRC aiktcdspace.org

Accessing Two-Dimensional
Array Elements

• An element in a two-dimensional array is
accessed by using the subscripts, i.e., row index
and column index of the array. For example −

int val = a[2][3];

• The above statement will take the 4th element
from the 3rd row of the array. You can verify it in
the above figure.

IR@AIKTC-KRRC aiktcdspace.org

Passing Arrays as Function
Arguments in C

• If you want to pass a single-dimension array as an argument in a
function, you would have to declare a formal parameter in one of
following three ways and all three declaration methods produce
similar results because each tells the compiler that an integer
pointer is going to be received. Similarly, you can pass multi-
dimensional arrays as formal parameters.

• Way-1

• Formal parameters as a pointer −

void myFunction(int *param) {
.
.
.

}

IR@AIKTC-KRRC aiktcdspace.org

• Way-2

• Formal parameters as a sized array −
void myFunction(int param[10]) {

.

.

.
}

• Way-3

• Formal parameters as an unsized array −
void myFunction(int param[]) {

.

.

.
}

IR@AIKTC-KRRC aiktcdspace.org

	Slide Number 1
	C - Arrays
	Declaring Arrays
	Initializing Arrays
	Initializing Arrays
	Multi-dimensional Arrays in C
	Two-dimensional Arrays
	Initializing Two-Dimensional Arrays
	Accessing Two-Dimensional Array Elements
	Passing Arrays as Function Arguments in C
	Slide Number 11

