Fundamentals of Mechanical Vibrations

Prof. Zia Momin

Content

Fundamentals of vibrations

- Single degree-of-freedom systems
- Free vibrations
- Harmonic forcing functions
- General forcing functions
- Two degree-of-freedom systems
- Free vibrations
- Forced vibrations
- Multi degree-of-freedom systems
- Free vibrations
- Forced vibrations

IR@AIKTC-KRRC

Mechanical Vibration

Defined as oscillatory motion of bodies in response to disturbance.

Oscillations occur due to the presence of a restoring force

Vibrations are everywhere:

Vehicles: residual imbalance of engines, locomotive wheels

Rotating machinery: Turbines, pumps, fans, reciprocating machines

Musical instruments

Excessive vibrations can have detrimental effects:

Human body: eardrums, vocal cords, walking and running

Noise

Loosening of fasteners

Tool chatter

Fatigue failure

Discomfort

When vibration frequency coincides with natural frequency, resonance occurs.

Fundamentals

In simple terms, a vibratory system involves the transfer of potential energy to kinetic energy and vice-versa in alternating fashion.

When there is a mechanism for dissipating energy (damping) the oscillation gradually diminishes.

In general, a vibratory system consists of three basic components:

A means of storing potential energy (spring, gravity)

A means of storing kinetic energy (mass, inertial component)

A means to dissipate vibrational energy (damper)

Simple Pendulum

This can be observed with a pendulum:

At position 1: the kinetic energy is zero and the potential energy is

 $mgl(1 - cos \theta)$

•

At position 2: the kinetic energy is at its maximum

• At position 3: the kinetic energy is again zero and the potential energy at its maximum.

In this case the oscillation will eventually stop due to aerodynamic drag and pivot friction → HEAT

IR@AIKTC-KRRC

Degrees of Freedom

• The number of degrees of freedom: number of independent coordinates required to completely determine the

motion of all parts of the system at any time.

• Examples of single degree of freedom systems:

(a) Slider-crank-

spring mechanism

Two DOF

