

School of Engineering & Technology

KALSEKAR TECHNICAL CAMPUS

School of Pharmacy

Knowledge Resource & Relay Centre (KRRC)

nch: ELECT. ENGG. SEM: IV

papers from your exam cell:

St. Subject Name Subject Code Format No. of

nents Of Power System trical Machines – I	EEC401 EEC402 EEC403	SC	нс	Copies
nents Of Power System	EEC402			07_
	1			
trical Machines - I	EEC403			
	100000000000000000000000000000000000000			
al Processing	EEC404			
log And Digital Integrated Circuits	EEC405			
nerical Methods & Optimization miques	EEC406			
		1100	4444	4446.180

Note: SC - Softcopy, HC - Hardcopy

(Shaheen Ansari) Librarian, AIKTC

13/5/19

Paper / Subject Code: 39002 / APPLIED MATHEMATICS - IV

Duration: 3 Hours

Marks: 80

N.B. a) Question number 1 is compulsory

- b) Solve any three from the remaining.
- c) All the question carry equal marks

1. a) Find the extremal of
$$\int_0^u \frac{1+y^2}{yt^2} dx$$
 subject to $y(0)=0$, $y(\pi)=0$. [5]

b) Using Cauchy's Schwartz Inequality, show that $(a\cos\theta + b\sin\theta)^2 \le a^2 + b^2$,

- c) Show that Eigen values of Hermitian matrix are real. [5]
- d) Evaluate $\int (z^z 2\bar{z} + 1) dz$ over a closed circle $x^2 + y^2 = 2$. [5]
- 2. a) Find the extremal $\int_{V_1}^{V_2} (y^2 y'^2 2y \cosh x) dx$ [6]
 - b) Find the Eigen values and Eigen Vectors of the matrix $A^2 + 3I$, where [6]

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

c) Obtain all possible expansion of $f(z) = \frac{1}{z^2(z-1)(z+2)}$ about z=0 indicating

- 3. a) Verify Cayley Hamilton Theorem for $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & -2 \\ -2 & 0 & 1 \end{bmatrix}$ and find A^{-1} . [6]
 - b) b) Using Residue theorem evaluate $\int \frac{z^2}{z^2+z^2} dz$ where C is |z|=4. [6]
 - c) Show that a closed curve 'C' of a given fixed length (perimeter) which encloses maximum area is a circle. [8]
- 4. a) Find an orthonormal basis for the subspace of R^3 by applying Gram-Schmidt process, where $u_1=(1,0,0), u_2=(3,7,-2), u_3=(0,4,1).$ [6]
 - b) Find A^{50} for the matrix $A = \begin{bmatrix} 4 & 3 \\ 7 & 8 \end{bmatrix}$ [6]

Page 1 of 2

56504

Paper / Subject Code: 39002 / APPLIED MATHEMATICS - IV

- ε) Reduce the Quadratic Form xy+yz+zx to normal form by congruent transformation.
 - 8
- 3) Using Rayleigh-Ritz Method, find an approximate solution to the extremal problem $\int_0^1 (y^2 + 2yx - y'^2) dx$, y(0) = 0, y(1) = 0. [6]
 - b) Determine whether the set $V=\{(x,y,z); x=1,y=0 \ or \ z=0\}$ is a subspace of R3 [6]
 - c) Show that the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ is diogonable. Also find the transforming matrix and diagonal matrix. [8]
- a) Using Cauchy's Residue Theorem, evaluate $\int_0^{2\pi} \frac{d\theta}{2+\cos\theta}$ 6. [6]
 - b) Evaluate $\int_{1-i}^{2+i} (2x+1+iy)dx$ along the straight line joining A(1,-1) and B(2,1)[6]
 - c) Find the singular value decomposition of the matrix $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$ [8]
