

School of Engineering & Technology

KALSEKAR TECHNICAL CAMPUS

School of Pharmacy

Knowledge Resource &	Relay	Centre	(KRRC)
----------------------	-------	--------	--------

AIKTC/KRRC/SoET/ACK	N/QUES/2018	3-19/	Date:		
School: SoET-CBSGS	Branch: _	COMP. ENGG.	SEM: _	ш	_
To, Exam Controller,					
AIKTC, New Panvel.					

Dear Sir/Madam.

Received with thanks the following Semester/Unit Test-I/Unit Test-II (Reg./ATKT) question papers from your exam cell:

		Format		No. of
Sr. Subject Name No.	Subject Code	SC	HC	Copies
Applied Mathematics- III	CSC301		V	02
Object Oriented Programming Methodology	CSC302			
Data Structures	CSC303			
Digital Logic Design & Analysis	CSC304			
Discrete Structures	CSC305			
6 Electronic Circuits & Communication Fundamental	CSC306			
	Methodology Data Structures Digital Logic Design & Analysis Discrete Structures Electronic Circuits & Communication	Methodology Data Structures CSC303 Digital Logic Design & Analysis CSC304 Discrete Structures CSC305 Electronic Circuits & Communication CSC306	Methodology Data Structures CSC303 Digital Logic Design & Analysis CSC304 Discrete Structures CSC305 Electronic Circuits & Communication CSC306	Methodology Data Structures CSC303 Digital Logic Design & Analysis CSC304 Discrete Structures CSC305 Electronic Circuits & Communication CSC306

Note: SC - Softcopy, HC - Hardcopy

(Shaheen Ansari) Librarian, AIKTC

SE-Sem-III_ CBS (S- COMPS -AM-III) Paper / Subject Code: 49301 / APPLIED MATHEMATICS-III

8/5/19

Q. P. Code: 37687

Time Duration: 3Hr Total Marks: 80 Maximum N.B.:1) Question no.1 is compulsory. 2) Attempt any three questions from Q.2to Q.6. Marks 3) Figures to the right indicate full marks. [5] Q1. a) Find the Laplace transform of $\cos 2t \sin t e^{-t}$. b) Find the half-range sine series for $f(x) = x(\pi - x)$ in $(0, \pi)$. [5] [5] Show that the function $f(z) = ze^z$ is analytic and find f'(z) in terms of z: Prove that $\nabla \left\{ \nabla, \frac{r}{r} \right\} = -\frac{2}{r^3} \dot{r}$. [5] Q2. a) Find the inverse Z-transform of $F(z) = \frac{z}{(z-1)(z-2)} |z| > 2$. [6] Find the analytic function whose real part is $\frac{\sin 2x}{\cosh 2y + \cos 2x}$ [6] Obtain Fourier series for the function $f(x) = \begin{cases} 1 + \frac{2x}{\pi} & , -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi} & , 0 \le x \le \pi \end{cases}$ [8] C) deduce that $\frac{\pi^2}{8} = \frac{1}{3^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$ Q3, a) Find $L^{-1} \left[\frac{1}{e^2(\epsilon_1 + \epsilon_2)^2} \right]$ using convolution theorem. [6] b) Show that the set of functions $\cos nx$, n = 1, 2, 3... is orthogonal on $[0, 2\pi]$. [6] [8] Using Green's theorem evaluate $\int_C \left(\frac{1}{a}dx + \frac{1}{c}dy\right)$ where C is the boundary of the region defined by x = 1, x = 4, y = 1 and $y = \sqrt{x}$. Q4. a) Find Laplace transform of $f(t) = k \frac{t}{\pi}$ for $0 \le t \le T$ and f(t) = f(t+T). [6] b) Show that $\vec{f} = (x^2 + xy^2) i + (y^2 + x^2y) i$ is irrotational and find its scalar potential. [6] e) Find half – range cosine series for f(x) = x, 0 < x < 2. Using Parseval's identity [8] 1) $\frac{\pi^*}{a_L} = \frac{1}{\epsilon^4} + \frac{1}{\epsilon^4} - \frac{1}{\epsilon^4} + \cdots$ (i) $\frac{\pi^4}{90} = \frac{1}{14} + \frac{1}{24} + \frac{1}{24} + \cdots$ [6] Use divergence theorem to show that $\iint_{C} \nabla r^{2} ds = 6v$ where S is any closed surface enclosing a volume V. b) Find the Z-transform of f(k) = kα^k, k≥ 0. [6] i) Find $L^{-1}\left[\frac{(s+2)^2}{(s^2+4s+8)^2}\right]$ [8] ii) Find L-1[2 tanh-1 s]

(D² - 3D + 2)y = 4e²¹, with y(0) = -3,y (0) = 5.
 b) Find the bilinear transformation which maps the points 1, -i, 2 on z-plane onto 0, 2, -i respectively of w-plane.

Q6.a) Solve using Laplace transform

Express the function $f(x) = \begin{cases} \sin x , & 0 < x \le \pi \\ 0 & x < 0, x > \pi \end{cases}$ as Fourier integral and deduce that $\int_0^\infty \frac{\cos(\frac{w\pi}{2})}{1-w^2} dw = \frac{\pi}{2}$.

[0]